- [ABC304F] Shift Table(莫比乌斯反演)
yusen_123
数论算法图论c++
题目:https://www.luogu.com.cn/problem/AT_abc304_f思路:容斥原理,莫比乌斯反演应该都可以,我用的是莫比乌斯反演。注意:最好用longlong类型;代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include
- Lcms(莫比乌斯反演)
yusen_123
数论c++算法
题目路径:https://www.luogu.com.cn/problem/AT_agc038_c思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;c
- Array Equalizer(莫比乌斯反演)
yusen_123
数论算法c++
1605E-ArrayEqualizer思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;constintN=2e5+100;#defineLLlon
- 狄利克雷卷积及常见函数与莫比乌斯反演
溶解不讲嘿
数论线性代数笔记
QwQ文章目前没有题目,只有理论知识狄利克雷卷积狄利克雷卷积(DirichletConvolution)在解析数论中是一个非常重要的工具.使用狄利克雷卷积可以很方便地推出一些重要函数和公式,它在信息学竞赛和解析数论中至关重要.狄利克雷卷积是定义在数论函数间的二元运算.数论函数,是指定义域为N\mathbb{N}N(自然数),值域为C\mathbb{C}C(复数)的一类函数,每个数论函数可以视为复数
- 莫比乌斯反演(acwing2702)
yusen_123
数论算法
对于给出的n�个询问,每次求有多少个数对(x,y)(�,�),满足a≤x≤b,c≤y≤d�≤�≤�,�≤�≤�,且gcd(x,y)=kgcd(�,�)=�,gcd(x,y)gcd(�,�)函数为x�和y�的最大公约数。输入格式第一行一个整数n�。接下来n�行每行五个整数,分别表示a、b、c、d、k�、�、�、�、�。输出格式共n�行,每行一个整数表示满足要求的数对(x,y)(�,�)的个数。数据范
- 洛谷p1829(莫比乌斯反演)
yusen_123
数论c++算法数据结构
思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#includeusingnamespacestd;constdoubleeps=1e-8;constintN=1e7+10;constlonglongmod=20101009;#defineLLlonglongintpre[N],st[N];intn,cn,m;LLmu[N];
- P3704数字表格(莫比乌斯反演)
yusen_123
数论算法
题目背景Doris刚刚学习了fibonacci数列。用fi表示数列的第i项,那么0=0,1=1f0=0,f1=1fn=fn−1+fn−2,n≥2题目描述Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是gcd(i,j),其中gcd(i,j)表示i,j的最大公约数。Doris的表格中共有n×m个数,她想知道这些数的乘积是多少。答案对109+7取模。输入格式本题单个测试点内
- BZOJ 2440 完全平方数 (容斥+莫比乌斯反演+二分)
_TCgogogo_
数论二分/三分/两点法组合数学BZOJ莫比乌斯反演容斥二分
2440:[中山市选2011]完全平方数TimeLimit:10SecMemoryLimit:128MBSubmit:1673Solved:799[Submit][Status][Discuss]Description小X自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而这丝毫不影响他对其他数的热爱。这天是小X的生日,
- 《算法竞赛进阶指南》------数论习题篇1
axtices
数论算法数论
文章目录练习9:XORBZOJ2115(*线性基。求图中异或和,可谓经典中的经典)练习10:新Nim游戏BZOJ3105(*NIM进阶版NIM博弈+线性基)练习11:排列计数BZOJ4517(*错位排序)练习12:SkyCode(*容斥原理$莫比乌斯反演经典)练习16魔法珠CH3B16(SG博弈)练习17:GeorgiaandBob(*NIM博弈三定理)**错误思路**:**NIM博弈三定理**:
- YYHS-NOIP模拟赛-gcd
weixin_33845477
题解这道题题解里说用莫比乌斯反演做(我这个蒟蒻怎么会做呢)但是不会,所以我们另想方法,这里我们用容斥来做我们先把500000以内的所有质数筛出来每次读入编号的时候,先把编号对应的这个数分解质因数然后我们dfs枚举这个数的质因子取或不取,我们用t来表示取的质因子个数,如果t为奇数,ans就加,反之就减(容斥原理)1#include2#defineN2000053#defineM5000054#def
- 2019.6.summary
LMB_001
刷题总结刷题总结
2019.6.1BZOJ3028:食物生成函数题,母函数乘起来就好了BZOJ3544:[ONTAK2010]CreativeAccounting嗯,就是可以用set维护前缀和,取后继或最小数贪心就好啦BZOJ2820:YY的GCD莫比乌斯反演BZOJ4173:数学https://blog.csdn.net/zhhx2001/article/details/52300924由这个blog里的证明我们
- 莫比乌斯函数
林苏泽
数论
目录前导积性函数莫比乌斯函数莫比乌斯反演莫比乌斯反演定理莫比乌斯反演定理证明莫比乌斯反演另一性质(与欧拉函数有关)前导要学习莫比乌斯函数需要学习到积性函数,深度理解欧拉筛。先说说什么是积性函数吧。积性函数其实积性函数非常好理解,定义积性函数:若gcd(a,b)=1,且满足f(ab)=f(a)f(b),则称f(x)为积性函数完全积性函数:对于任意正整数a,b,都满足f(ab)=f(a)f(b),则称
- 积性函数及其初级应用
SMT0x400
学习算法数学
积性函数及其初级应用垃圾博客,我本地LaTeX挂了,艹大量内容和入门方式都参考了莫比乌斯反演与数论函数。感谢CMD大爷!0xFF前置知识1.质数及其判定,质因数及其分解小学课本里面讲过质数的定义了,不细讲。分解质因数也是基本功。2.筛法同学们想必都会埃氏筛法吧,即对于每一个质数枚举其倍数筛除整个值域内的所有数。如果你学得更远一点,那么你会使用欧拉筛法。它的算法思想这里不再赘述。后面的一切练习题都是
- 数论知识点总结(一)
Mark 85
数学数论算法数据结构
文章目录目录文章目录前言一、数论有哪些二、题法混讲1.素数判断,质数,筛法2.最大公约数和最小公倍数3.快速幂4.约数前言现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣!一、数论有哪些数论原根,素数判断,质数,筛法最大公约数,gcd扩展欧几里德算法,快速幂,exgcd,不定方程,进制,中国剩余定理,CRT,莫比乌斯反演,逆元,Lucas定理,类欧几里得算法,调和级数
- HAOI2011 Problem b
SHOJYS
算法c++
Problemblink做法:莫比乌斯反演。思路:对于给出的nnn个询问,每次求有多少个数对(x,y)(x,y)(x,y),满足a≤x≤ba\lex\leba≤x≤b,c≤y≤dc\ley\ledc≤y≤d,且gcd(x,y)=k\gcd(x,y)=kgcd(x,y)=k,gcd(x,y)\gcd(x,y)gcd(x,y)函数为xxx和yyy的最大公约数。我们设f(n)=∑i=1x∑j=1y
- HDU 6715算术 莫比乌斯反演
9fe5164d41b8
@[toc]题意,求。链接:hdu6715思路方法一:打表得出:进一步按套路优化,提出,令得:首先这个东西是,是一个积性函数,所以可以筛出来。这个东西可以按分别预处理出来,预处理的复杂度和埃式筛一样是,空间复杂度也是。最后上面这个式子就可以求和了。HDU数据证明,不预处理第二点更快。。。方法二:已知又因为:因此:因为当不为时:而当为时,自然也是,所以也不会影响下面这个式子:接下来的步骤和方法一就相
- 莫比乌斯反演
Evan_song1234
数学算法与数据结构算法
莫比乌斯反演主要用于快速计算一些阴间式子(包含gcd(i,j)\gcd(i,j)gcd(i,j)等)。至于如何应用,往下看。莫比乌斯函数μ(x)={1x=10n含有平方因子(−1)kk为n本质不同质因子个数\mu(x)=\begin{cases}1&x=1\\0&n含有平方因子\\(-1)^k&k为n本质不同质因子个数\end{cases}μ(x)=⎩⎨⎧10(−1)kx=1n含有平方因子k为n
- 莫比乌斯反演
WangLi&a
莫比乌斯反演狄利克雷卷积杜教筛数论分块数论
莫比乌斯反演定义莫比乌斯反演公式:[n=1]=∑d∣nμ(d)[n=1]=\underset{d|n}\sum\mu(d)[n=1]=d∣n∑μ(d)其他几种莫比乌斯反演的形式:标准形式:f(n)=∑d∣ng(d)⇔g(n)=∑d∣nμ(d)f(nd)f(n)=\underset{d|n}\sumg(d)\Leftrightarrowg(n)=\underset{d|n}\sum\mu(d)f(\
- 【Codeforces】 CF1436F Sum Over Subsets
Farmer_D
Codeforces算法
题目链接CF方向Luogu方向题目解法首先考虑消去gcdgcdgcd的限制考虑莫比乌斯反演优先枚举ddd可得答案为∑d=1nμ(d)∗ans(d)\sum_{d=1}^{n}\mu(d)*ans(d)∑d=1nμ(d)∗ans(d)其中ans(d)ans(d)ans(d)是所有aia_iai是ddd的倍数组成的答案令aia_iai为ddd的倍数的所有数的可重集为SSS考虑∑x∈Ax∗∑y∈By=∑
- 数论分块学习笔记
Dawn-_-cx
数论学习笔记算法数论c++数论分块杜教筛
准备开始复习莫比乌斯反演,杜教筛这一部分,先复习一下数论分块0.随便说说数论分块可以计算如下形式的式子∑i=1nf(i)g(⌊ni⌋)\sum_{i=1}^{n}f(i)g(\lfloor\frac{n}{i}\rfloor)∑i=1nf(i)g(⌊in⌋)。利用的原理是⌊ni⌋\lfloor\frac{n}{i}\rfloor⌊in⌋的不同的值不超过2n2\sqrt{n}2n个。当我们可以在O(
- C/C++数论/数学算法总结(关于数学知识以及一些比较重要的算法)
Xq_23
大数算法编程语言
总结C/C++关于数学知识以及一些比较重要的算法1.数论整数型问题:整除、最大公约数、最小公倍数、欧几里得算法、扩展欧几里得算法.素数问题:素数判断、区间素数统计.同余问题:模运算、同于方程、快速幂、中国剩余定理、逆元、整数分解、同余定理.不定方程.乘性函数:欧拉函数、伪随机数、莫比乌斯反演.2.组合数学排列组合:技术原理、特殊排列、排列生成、组合生成.母函数:普通型、指数型.递推关系:斐波那契数
- 「SDOI2008」仪仗队
L('ω')┘脏脏包└('ω')」
题解题解
目录1.介绍2.分析3.代码1.有注释版2.copy专用1.介绍(同上,教练把lg禁了,暂时给不了网址+还我LG!!!)怎么说呢,弱化forest(forest网址下次补上)就这一个弱化,就从莫比乌斯反演欧拉函数2.分析看一看图片其实我们可以沿着对角线就是一下把它变成、与(截屏截的好丑呀qwq)实际上,我们只需要求的总数给它乘二加三(因为有(1,0),(1,1),(0,1))即可问题又来了:怎么求
- 算法学习笔记(24): 狄利克雷卷积和莫比乌斯反演
jeefy
#狄利克雷卷积和莫比乌斯反演>看了《组合数学》,再听了学长讲的……感觉三官被颠覆……[TOC]##狄利克雷卷积如此定义:$$(f*g)(n)=\sum_{xy=n}f(x)g(y)$$或者可以写为$$(f*g)(n)=\sum_{d|n}f(d)g
- [HAOI2011]Problem b(莫比乌斯反演)
何况虚度光阴
数论c++算法
[HAOI2011]Problemb题目链接:https://www.luogu.com.cn/problem/P2522题目描述对于给出的nnn个询问,每次求有多少个数对(x,y)(x,y)(x,y),满足a≤x≤ba\lex\leba≤x≤b,c≤y≤dc\ley\ledc≤y≤d,且gcd(x,y)=k\gcd(x,y)=kgcd(x,y)=k,gcd(x,y)\gcd(x,y)gcd(
- P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
何况虚度光阴
数论c++图论算法
[国家集训队]Crash的数字表格/JZPTAB题目描述今天的数学课上,Crash小朋友学习了最小公倍数(LeastCommonMultiple)。对于两个正整数aaa和bbb,lcm(a,b)\text{lcm}(a,b)lcm(a,b)表示能同时整除aaa和bbb的最小正整数。例如,lcm(6,8)=24\text{lcm}(6,8)=24lcm(6,8)=24。回到家后,Crash还在想着课
- 莫比乌斯反演-奇妙的欧拉
An_Account
让我们从一道题开始求\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j),(n首先对gcd(i,j)分类,有\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)=\sum_{k=1}^{n}k\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=k]同时除以k=\sum_{k=1}^{n}k\sum_{i=1}^{\lfloor\fra
- 数学/数论专题:莫比乌斯函数与欧拉函数
Plozia
学习笔记+专项训练数学/数论算法
数学/数论专题:莫比乌斯函数与欧拉函数(进阶)0.前言1.前置知识2.正文3.总结4.参考资料0.前言本篇文章会从狄利克雷卷积的角度,讨论莫比乌斯函数与欧拉函数的相关性质。或者说就是利用狄利克雷卷积重新证一遍这两个函数的性质以及弄出几个新的式子。其实我觉得这块还是挺妙的,也可能是我做DP和数据结构做疯了(1.前置知识首先您需要知道欧拉函数,狄利克雷卷积,莫比乌斯函数+莫比乌斯反演。如果不知道,可以
- 【笔记】莫比乌斯反演-从入门到入土
inferior_hjx
笔记算法c++
上一篇:莫比乌斯反演(前置知识)文章目录莫比乌斯反演关于反演莫比乌斯函数定义性质莫比乌斯反演公式公式1公式2整除分块引入关于整除分块基础推导简单扩展莫比乌斯反演的应用例1:证明下式成立例2:YY的GCD例3:Problemb例4:完全平方数例5:约数个数和总结莫比乌斯反演正片开始关于反演顾名思义,反演就是反向演变,举个栗子,若有F(n)=k⋅f(n)F(n)=k\cdotf(n)F(n)=k⋅f(
- 【笔记】莫比乌斯反演(前置知识)
inferior_hjx
笔记c++算法
文章目录前言前置知识模定义性质整除定义性质同余定义性质逆元定义性质积性函数定义常见的积性函数证明欧拉函数为积性函数例1:欧拉函数线性筛例2:莫比乌斯函数线性筛前言由于文章正文太长,不得不分几篇博客。本篇为数论基础内容,学习过数论的可以跳过。最近学了莫比乌斯反演和一点狄利克雷卷积,感觉很难,也是看了很多博客才有点明,写一篇博客帮助自己理解。由于数论大多基于正整数讨论,故除特殊说明外,本文所有变量都为
- 莫比乌斯反演经典例题(1)
__LazyCat__
莫比乌斯反演算法c++
链接:P2257YY的GCD-洛谷|计算机科学教育新生态(luogu.com.cn)题意:给定n,m,求∑i=1n∑j=1m[gcd(i,j)==prime]\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==prime]∑i=1n∑j=1m[gcd(i,j)==prime]。题解:首先枚举质数可化为∑d∈primemin(n,m)∑i=1n/d∑j=1m/d[gcd(i
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源