Cartographer源码阅读2D&3D-前端自适应滤波-AdaptiveVoxelFilter

Cartographer源码阅读-2D前端自适应滤波-AdaptiveVoxelFilter

基本原理:
调用体素滤波,如果体素滤波后点数大于阈值,则返回,如果小于阈值,则接着使用二分法进行体素滤波。

class AdaptiveVoxelFilter {
 public:
  // 构造函数读入max_length min_num_points max_range
  explicit AdaptiveVoxelFilter(
      const proto::AdaptiveVoxelFilterOptions& options);

  AdaptiveVoxelFilter(const AdaptiveVoxelFilter&) = delete;
  AdaptiveVoxelFilter& operator=(const AdaptiveVoxelFilter&) = delete;
  // 接口
  PointCloud Filter(const PointCloud& point_cloud) const;

 private:
  const proto::AdaptiveVoxelFilterOptions options_;
};

PointCloud AdaptiveVoxelFilter::Filter(const PointCloud& point_cloud) const {
  return AdaptivelyVoxelFiltered(
      options_, FilterByMaxRange(point_cloud, options_.max_range()));
}

接口:

PointCloud AdaptivelyVoxelFiltered(
    const proto::AdaptiveVoxelFilterOptions& options,
    const PointCloud& point_cloud) {
  if (point_cloud.size() <= options.min_num_points()) {
    // 'point_cloud' is already sparse enough.
    return point_cloud;
  }
  // 又调用VoxelFilter来滤波,其中cell的size=max_length
  PointCloud result = VoxelFilter(options.max_length()).Filter(point_cloud);
  // 如果剩下的点大于min_num_points,则返回
  if (result.size() >= options.min_num_points()) {
    // Filtering with 'max_length' resulted in a sufficiently dense point cloud.
    return result;
  }
  // 如果小于min_num_points,二分法滤波
  // Search for a 'low_length' that is known to result in a sufficiently
  // dense point cloud. We give up and use the full 'point_cloud' if reducing
  // the edge length by a factor of 1e-2 is not enough.
  for (float high_length = options.max_length();
       high_length > 1e-2f * options.max_length(); high_length /= 2.f) {
    float low_length = high_length / 2.f;
    result = VoxelFilter(low_length).Filter(point_cloud);
    if (result.size() >= options.min_num_points()) {
      // Binary search to find the right amount of filtering. 'low_length' gave
      // a sufficiently dense 'result', 'high_length' did not. We stop when the
      // edge length is at most 10% off.
      while ((high_length - low_length) / low_length > 1e-1f) {
        const float mid_length = (low_length + high_length) / 2.f;
        const PointCloud candidate =
            VoxelFilter(mid_length).Filter(point_cloud);
        if (candidate.size() >= options.min_num_points()) {
          low_length = mid_length;
          result = candidate;
        } else {
          high_length = mid_length;
        }
      }
      return result;
    }
  }
  return result;
}

你可能感兴趣的:(cartographer)