【高等数学】多元函数-连续可导可微(定义+证明+记忆方法)

多元函数-连续 偏导 可微

文章目录

  • 多元函数-连续 偏导 可微
    • 定义
      • 1.连续定义
      • 2.偏导定义
      • 3.可微定义
    • 2.三者关系
    • 3.关系证明
      • 3.1 偏导和连续
      • 3.2 可微和偏导
      • 3.3 可微和连续
    • 4.记忆方法
    • 5.参考文章

定义

1.连续定义

设二元函数 f ( P ) = f ( x , y ) f(P) = f(x,y) f(P)=f(x,y)的定义域为D, P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)为D的聚点,且 P 0 ∈ D P_0 \in D P0D,若

l i m ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \displaystyle lim_{(x,y)\to(x_0,y_0)}f(x,y) = f(x_0,y_0) lim(x,y)(x0,y0)f(x,y)=f(x0,y0)

则称函数 f ( x , y ) f(x,y) f(x,y) P 0 P_0 P0连续

聚点:如果给定任意的 δ > 0 \delta > 0 δ>0,点P的去心领域 U ( P , δ ) U(P,\delta) U(P,δ)内总有E的点,那么称P是E的聚点

2.偏导定义

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一领域内有定义,当 y y y固定在 y 0 y_0 y0,而x在 x 0 x_0 x0处有增量 Δ x \Delta x Δx时,相应的函数有增量

f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) \displaystyle f(x_0+\Delta x,y_0) - f(x_0,y_0) f(x0+Δx,y0)f(x0,y0)

如果

l i m Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \displaystyle lim_{\Delta x \to 0} \frac{f(x_0+\Delta x,y_0) - f(x_0,y_0)}{\Delta x} limΔx0Δxf(x0+Δx,y0)f(x0,y0)

存在,那么称此极限为函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处对 x x x的偏导数,记作

∂ z ∂ x ∣ x = x 0 , y = y 0 \displaystyle \frac{\partial z}{\partial x}|_{x=x_0,y=y_0} xzx=x0,y=y0 , ∂ f ∂ x ∣ x = x 0 , y = y 0 \displaystyle \frac{\partial f}{\partial x}|_{x=x_0,y=y_0} xfx=x0,y=y0, Z x ∂ x ∣ x = x 0 , y = y 0 \displaystyle \frac{Z_x}{\partial x}|_{x=x_0,y=y_0} xZxx=x0,y=y0 f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0)

3.可微定义

设函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的某领域内有定义,如果函数在 ( x , y ) (x,y) (x,y)的全增量

Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z = f(x+\Delta x, y+\Delta y) - f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)

可表示为

Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z = A\Delta x + B\Delta y + o(\rho) Δz=AΔx+BΔy+o(ρ)

其中A和B不依赖于 Δ x \Delta x Δx Δ y \Delta y Δy而仅与x和y有关, ρ = ( Δ x ) 2 + Δ y ) 2 \rho = \sqrt{(\Delta x)^2 +\Delta y)^2} ρ=(Δx)2+Δy)2 ,那么称函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)可微分,而 A Δ x + B Δ y A\Delta x + B\Delta y AΔx+BΔy称为函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的全微分,记作 d z dz dz,即

d z = A Δ x + B Δ y dz = A\Delta x + B\Delta y dz=AΔx+BΔy

2.三者关系

【高等数学】多元函数-连续可导可微(定义+证明+记忆方法)_第1张图片

3.关系证明

3.1 偏导和连续

  1. 可导不一定连续

    对于不成立的推导,我们只需举出一个反例即可

    f ( x , y ) = { x y x 2 + y 2 ( x , y ) ≠ ( 0 , 0 ) 0 ( x , y ) = ( 0 , 0 ) \displaystyle f(x,y)=\begin{cases} \frac{xy}{x^2+y^2} & (x,y) ≠ (0,0) \\ 0 & (x,y) = (0,0) \end{cases} f(x,y)={x2+y2xy0(x,y)=(0,0)(x,y)=(0,0)

    由于

    f x ′ ( 0 , 0 ) = l i m Δ x → 0 f ( Δ x , 0 ) − f ( 0 , 0 ) Δ x = l i m Δ x → 0 0 − 0 Δ x = 0 \displaystyle f'_x(0,0) = lim_{\Delta x\to 0}\frac{f(\Delta x,0) - f(0,0)}{\Delta x} = lim_{\Delta x\to 0}\frac{0-0}{\Delta x} = 0 fx(0,0)=limΔx0Δxf(Δx,0)f(0,0)=limΔx0Δx00=0

    同理 f y ′ ( 0 , 0 ) = 0 \displaystyle f'_y(0,0) = 0 fy(0,0)=0, 故 ( 0 , 0 ) (0,0) (0,0)点可导, 设点P为聚点,当点P沿着平行于 y = k x y = kx y=kx的方向趋于与 ( 0 , 0 ) (0,0) (0,0)时,

    l i m x → 0 , y → k x = l i m x → 0 k x 2 x 2 + k 2 x 2 = k 1 + k 2 \displaystyle lim_{ x \to 0, y \to kx} = lim_{ x \to 0}\frac{kx^2}{x^2 + k^2x^2} = \frac{k}{1+k^2} limx0,ykx=limx0x2+k2x2kx2=1+k2k

    该极限不存在,则 f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)点不连续

  2. 连续不一定可导

    对于不成立的推导,我们只需举出一个反例即可

    f ( x , y ) = ∣ x ∣ + ∣ y ∣ \displaystyle f(x,y) = |x| + |y| f(x,y)=x+y

    l i m x → 0 , y → 0 f ( x , y ) = l i m x → 0 , y → 0 ( ∣ x ∣ + ∣ y ∣ ) = 0 = f ( 0 , 0 ) lim_{x\to0,y\to0}f(x,y) = lim_{x\to0,y\to0}(|x|+|y|) = 0 = f(0,0) limx0,y0f(x,y)=limx0,y0(x+y)=0=f(0,0),知 f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)点连续

    f ( x , 0 ) = ∣ x ∣ f(x,0) = |x| f(x,0)=x x = 0 x = 0 x=0处不可导,则 f x ′ ( 0 , 0 ) f_x'(0,0) fx(0,0)不存在,由对称性知 f y ′ ( 0 , 0 ) f_y'(0,0) fy(0,0)也不存在,故函数不可导

3.2 可微和偏导

  1. 可微一定偏导

    设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P ( x , y ) P(x,y) P(x,y)可微分,于是对于点P的某个领域内的任意一点 P ′ ( x + Δ x , y + Δ y ) P'(x+\Delta x,y+\Delta y) P(x+Δx,y+Δy)

    Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z = A\Delta x + B\Delta y + o(\rho) Δz=AΔx+BΔy+o(ρ)

    总成立。特别的,当 Δ y = 0 \Delta y = 0 Δy=0时, p = ∣ Δ x ∣ p=|\Delta x| p=∣Δx,所以上式成为

    f ( x + Δ x , y ) − f ( x , y ) = A Δ x + o ( ∣ Δ x ∣ ) f(x+\Delta x, y) - f(x,y) = A\Delta x + o(|\Delta x|) f(x+Δx,y)f(x,y)=AΔx+o(∣Δx)

    上式两边各除 Δ x \Delta x Δx,再令 Δ → 0 \Delta \to 0 Δ0而取极限,就得

    l i m Δ x → 0 f ( x + Δ x , y ) − f ( x , y ) Δ x = A \displaystyle lim_{\Delta x \to 0} \frac{f(x+\Delta x, y) - f(x,y)}{\Delta x} = A limΔx0Δxf(x+Δx,y)f(x,y)=A

    从而偏导数 ∂ f ∂ x \displaystyle \frac{\partial f}{\partial x} xf存在,且等于A,同理可证 ∂ z ∂ x = B \displaystyle \frac{\partial z}{\partial x} = B xz=B,证毕

  2. 偏导不一定可微

    对于不成立的推导,我们只需举出一个反例即可

    f ( x , y ) = { x y x 2 + y 2 ( x , y ) ≠ ( 0 , 0 ) 0 ( x , y ) = ( 0 , 0 ) \displaystyle f(x,y)=\begin{cases} \displaystyle \frac{xy}{\sqrt{x^2+y^2}} & (x,y) ≠ (0,0) \\ 0 & (x,y) = (0,0) \end{cases} f(x,y)= x2+y2 xy0(x,y)=(0,0)(x,y)=(0,0)

    由于

    f x ′ ( 0 , 0 ) = l i m Δ x → 0 f ( Δ x , 0 ) − f ( 0 , 0 ) Δ x = l i m Δ x → 0 0 − 0 Δ x = 0 \displaystyle f'_x(0,0) = lim_{\Delta x\to 0}\frac{f(\Delta x,0) - f(0,0)}{\Delta x} = lim_{\Delta x\to 0}\frac{0-0}{\Delta x} = 0 fx(0,0)=limΔx0Δxf(Δx,0)f(0,0)=limΔx0Δx00=0

    同理 f y ′ ( 0 , 0 ) = 0 \displaystyle f'_y(0,0) = 0 fy(0,0)=0, 故 ( 0 , 0 ) (0,0) (0,0)点可导,但

    l i m Δ x → 0 , Δ y → 0 [ f ( Δ x , Δ y ) − f ( 0 , 0 ) ] − [ f x ′ ( 0 , 0 ) Δ x + f y ′ ( 0 , 0 ) Δ y ] ρ = l i m Δ x → 0 , Δ y → 0 Δ x Δ y ( Δ x ) 2 + ( Δ y ) 2 \displaystyle lim_{\Delta x \to 0,\Delta y \to 0}\frac{[f(\Delta x,\Delta y) - f(0,0)] - [f_x'(0,0)\Delta x + f_y'(0,0)\Delta y]}{\rho} = lim_{\Delta x \to 0,\Delta y \to 0}\frac{\Delta x \Delta y}{(\Delta x)^2 + (\Delta y)^2} limΔx0,Δy0ρ[f(Δx,Δy)f(0,0)][fx(0,0)Δx+fy(0,0)Δy]=limΔx0,Δy0(Δx)2+(Δy)2ΔxΔy

    g ( x , y ) = x y x 2 + y 2 \displaystyle g(x,y) = \frac{xy}{x^2+y^2} g(x,y)=x2+y2xy, 设点P为聚点,当点P沿着平行于 y = k x y = kx y=kx的方向趋于与 ( 0 , 0 ) (0,0) (0,0)时,

    l i m x → 0 , y → k x = l i m x → 0 k x 2 x 2 + k 2 x 2 = k 1 + k 2 \displaystyle lim_{ x \to 0, y \to kx} = lim_{ x \to 0}\frac{kx^2}{x^2 + k^2x^2} = \frac{k}{1+k^2} limx0,ykx=limx0x2+k2x2kx2=1+k2k,该极限不存在,则 f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)点不可微

3.3 可微和连续

  1. 可微一定连续

    z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)可微分,那么由微分的定义有

    l i m ρ → 0 Δ z = 0 lim_{\rho \to 0}\Delta z = 0 limρ0Δz=0

    从而

    l i m Δ x → 0 , Δ y → 0 = f ( x + Δ x , y + Δ y ) = l i m ρ → 0 [ f ( x , y ) + Δ z ] = f ( x , y ) lim_{\Delta x \to 0,\Delta y \to 0}= f(x+\Delta x, y+\Delta y) = lim_{\rho \to 0}[f(x,y) + \Delta z] = f(x,y) limΔx0,Δy0=f(x+Δx,y+Δy)=limρ0[f(x,y)+Δz]=f(x,y)

    因此 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处连续

  2. 连续不一定可微

    同上举反例即可

    f ( x , y ) = ∣ x ∣ + ∣ y ∣ \displaystyle f(x,y) = |x| + |y| f(x,y)=x+y

    由3.1.2知 f ( x , y ) f(x,y) f(x,y) ( 0 , 0 ) (0,0) (0,0)点连续且函数不可导,而因为偏导存在是全微分的必要条件, 因此也不可微

4.记忆方法

【高等数学】多元函数-连续可导可微(定义+证明+记忆方法)_第2张图片

与一元函数连续可导可微对比记忆即可(一元函数关系可参考笔者上一篇文章), 两者的区别在于

  1. 多元函数偏导(可导)推不出连续
  2. 多元函数偏导(可导)推不出可微

其余部分都相同,那么为什么二元函数偏导推不出连续和可微呢? 下面从几何角度证明

函数可导,即偏导数 f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0), f y ( x 0 , y 0 ) f_y(x_0,y_0) fy(x0,y0)存在

f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0)本质上是 f ( x , y 0 ) f(x,y_0) f(x,y0)函数的导数,把 y y y y 0 y_0 y0代进去,现在只有 x x x在变化,而 x x x在变化的时候,只能在 y = y 0 y=y_0 y=y0的线上变化, 如下图 f x ( x , y 0 ) f_x(x,y_0) fx(x,y0)

这说明这点偏导数只跟这个二元函数沿 y = y 0 y=y_0 y=y0这条线上函数值有关

同理,代入 x 0 x_0 x0,这点的另一个偏导数只跟二元函数沿 x = x 0 x=x_0 x=x0这条线上函数值有关, 如下图 f y ( x 0 , y ) f_y(x_0,y) fy(x0,y)

【高等数学】多元函数-连续可导可微(定义+证明+记忆方法)_第3张图片

以上说明两个偏导数只跟过 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)点平行于两个坐标轴的十字线有关.

但连续是要求动点以任意方式趋向 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的极限等于 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)点函数值 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0).

故十字线上的函数值决定不了函数的重极限

同理,决定不了全微分

5.参考文章

  1. 高等数学第七版下册
  2. 武忠详辅导讲义

你可能感兴趣的:(几何学)