- CTF 竞赛密码学方向学习路径规划
David Max
CTF学习笔记密码学ctf信息安全
目录计算机科学基础计算机科学概念的引入、兴趣的引导开发环境的配置与常用工具的安装WattToolkit(Steam++)、机场代理Scoop(Windows用户可选)常用Python库SageMathLinux小工具yafuOpenSSLMarkdown编程基础Python其他编程语言、算法与数据结构(可选)数学基础离散数学与抽象代数复杂性分析密码学的正式学习兴趣的培养做题小技巧系统学习需要了解并
- 抽象代数精解【2】
叶绿先锋
基础数学与应用数学抽象代数人工智能
文章目录群消去律的意义消去律与群的其他性质总结难点与例子例子参考文献群下面由文心一言生成群中的消去律是群论中的一个基本定理,它描述了群中元素之间的一种特殊关系。具体来说,群中的消去律包含左右两个方向,可以表述为:左消去律:若(ab=ac)(ab=ac)(ab=ac)且(a,b,c∈G)(a,b,c\inG)(a,b,c∈G)其中(G)是一个群,则b=c。右消去律:若(ba=ca)(ba=ca)(b
- Collatz 猜想和 Python
不连续小姐
PythonDay4:CollatzConjecture原来总有学生问我,微积分有什么用啊,我说如果微积分学好了,也许抽象代数和数论就能学好,那最后就能像AndrewWiles一样上人物年度杂志的封面了.(AndrewWiles证明了Fermat'sLastTheorem,费玛大定理).[captionid="attachment_1466"align="alignnone"width="300"
- 范畴论系列(一)初识范畴
数学
起因写这个系列起源于自己学习编程语言时遇到的问题,研究编程语言不可避免要与数学打交道,自己大学只学过数学分析和高等代数等数学系一年级课程,PLT(ProgrammingLanguageTheroy)需要的数学基础大致为:抽象代数(AbstractAlgebra)、拓扑(Topology)、范畴(CategoryTheory)等代数知识,在阅读相关PL书籍时,深感自己的无力。我又是一个"死磕"的人,
- 泛函分析 第二章 线性算子与线性泛函
73826669
数学#泛函分析
文章目录第二章线性算子与线性泛函线性算子的概念定义2.1.1线性算子定义2.1.8线性算子的连续性定义2.1.12算子的范数Riesz定理及其应用定理2.2.1F.Riesz纲与开映像定理定义2.3.1疏定义2.3.4纲集定理2.3.6Baire纲定理定理2.3.7Banach逆算子定理定理2.3.8开映像定理定义2.3.9闭线性算子定理2.3.12B.L.T定理2.3.13等价范数定理定理2.3
- 幂等性非侵入式实现
十一技术斩
面试mysqljava后端数据库
幂等性今天我们来谈谈什么是幂等性?引用百度百科的解析如下:幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“setTrue()”函
- 做研究系列:如何研究量子科学
科学禅道
Research:做研究系列量子计算
研究量子科学通常需要经过系统的学术训练和实践探索,以下是入门和深入研究量子科学的一般步骤:基础知识学习:学习物理学基础,包括经典力学、电磁学、热力学与统计物理等。掌握数学工具,如线性代数、微积分、泛函分析、复变函数论以及概率论与随机过程等,这些是理解和构建量子理论模型的基础。量子力学入门:从基本的量子力学原理开始,如波粒二象性、薛定谔方程、不确定性原理、态叠加原理和测量问题等。阅读经典的教材,例如
- 泛函分析笔记(八)Banach 空间中的lp空间和Lebesgue空间 (勒贝格空间)
豆沙粽子好吃嘛!
泛函分析
文章目录1.Banach空间的基本性质2.Banach空间的例子2.1.空间lp,1≤p≤∞l^p,1\lep\le\inftylp,1≤p≤∞2.2.Lebesgue空间Lp(Ω),1≤p≤∞L^p(\Omega),1\lep\le\inftyLp(Ω),1≤p≤∞1.Banach空间的基本性质赋范向量空间(X,∣∣⋅∣∣)(X,||\cdot||)(X,∣∣⋅∣∣)称为Banach空间,是指距
- 智能机器人与旋量代数(3)
Metaphysicist.
智能机器人与旋量代数机器人
Chapt2.李群李代数的基本理论2.1群论的基本概念(TheTheoryofGroups)群的概念最初是由19世纪的数学家伽罗瓦提出的,群是抽象代数中的一类结构,,它与研究对称性紧密相关,如代数方程的对称性以及几何图形的对称性(同样的群甚至可以表达几个不同种类物体的对称性)。通常可以认为群是所有对称运算的集合,群论从本质上来讲就是一种描述各种各样的对称性的数学工具。定义2.1群是指可对其元素gg
- 不动点定理 课程分享15 2022-07-31
彭求实
不动点定理课程分享15这是通识选修课《经济研究中的计算方法》第六讲的主要课例。一方面,它在经济学研究中有所应用;另一方面,它是计算方法中解高次方程迭代法的理论基础。一、不动点定理对于空间X到X自身的映射f,满足f(x)=x的点x∈X,被称为f的不动点。起源于求解方程的代数问题,后转化为几何理论中研究不动点的存在、个数、性质与求法的理论,成为拓扑学和泛函分析中的重要内容。较早的不动点定理是压缩映射原
- 哈工大数学学院洪桂祥教授(国家高层次人才)
ATINER
启发式算法
现任数学学院副院长,兼职数学研究所(InstitueofAdvancedStudyinMathematicofHIT),该所聘请几名国际兼职人员,包括芝加哥大学的吴宝珠(菲尔兹奖获得者),以及几个俄国人,所长许全华人在法国,这跟浙江大学类似,但浙大走的更远,连数学系主任都身在国外。洪桂祥、赖旭东(哈工大数学学院副教授,省级青年人才)及合作者徐邦在非交换分析(泛函分析的新方向)的非交换性、正性在极大
- 不动点迭代c语言for循环,概率论与数理统计-西北师范大学数学与统计学院.PDF
Jezzy WANG
不动点迭代c语言for循环
概率论与数理统计-西北师范大学数学与统计学院数学与统计学院数学与应用数学专业云亭班专业平台必修课程教学大纲数学与统计学院数学与应用数学专业云亭班专业平台必修课程包括以下11门课程:概率论与数理统计、实变函数、泛函分析、拓扑学、微分几何、C语言、近世代数、运筹学、常微分方程、复变函数、大学物理。概率论与数理统计一、说明课程性质:该课程是数学与应用数学专业云亭班专业平台必修课程之一,第5学期开设。周4
- 【无标题】
数学专业的小白
考研
考研过了一周,是不是该准备研究生复试了?结合自身经历谈谈研究生复试需要注意的事项:注意复试科目和形式每个学校复试科目和形式都大不一样,以数学专业举例,有的学校复试科目较多,如复变函数、实变函数、抽象代数、泛函分析()等;有的学校只需复试一个科目(必选一个科目)。现在估计是线下面试为主了,有的学校要求制作PPT或者简历,这个必须注意,PPT和简历上写的每个内容,都要经得起推敲,问起来必须能够回答出来
- 开始写你的技术博客吧
Foina数据分析狮
我来讲讲自己的经历吧。大学和研究生都是数学专业的,那手推公式是家常便饭,比如,大学课程数学分析经常要证明定理,研究生课程泛函分析老师不按照课本讲,经常自己准备讲义,两节课可能只推导一个公式,么得办法,我们就跟着记跟着抄。研究生我做的课题通俗点讲就是解方程,为啥选这个课题?因为我喜欢手推公式。我研究生的论文就解了两个方程,手写的推导过程笔记已经找不到啦,想缅怀岁月都没有东西可以寄托。刚参加工作时,我
- 格密码基础:q-ary格
唠嗑!
格密码格密码线性代数格基
目录一.格密码的重要性二.格密码基础2.1格点的另一种理解方式三.q-ary格3.1q-ary垂直格3.2q-ary格3.3二者结合四.论文中的q-ary格4.1定理14.2定理24.3定理3一.格密码的重要性格密码的基础是研究格点上的困难问题,这种格点使用抽象代数的观点则是上的子群。格密码近些年非常火热,主要由于以下几点:抗量子攻击。基于传统数论的公钥密码系统是无法抵抗量子攻击的,这也是格密码最
- 如何保证分布式情况下的幂等性
豆奶快攻
设计模式设计Java分布式
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。什么是幂等幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。在编程中⼀个幂等操作的特点是其任意多次执⾏所产⽣的影响均与⼀次执⾏的影响相同。幂等函数,或幂等⽅法,是指可以使⽤相同参数重复执⾏,并能获得相同结果的函数。这
- 线性代数一
刘瞧瞧
线性代数
每日学习刘瞧翘线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。概念线性代数是代数学的一个分
- 6.25--7.1周总结
金大小姐2019
一:学业1.基本的学业任务有没有完成?周四时答辩数学建模,周五泛函分析考试。虽然任务完成了,但总觉得特别的空虚。问题的思路根本不是自己想出来的,而是研究别人的论文。泛函分析平时上课老师讲的很认真,但是认真学的学生没有几个,考试时都是互相抄。我真不知道收获到了什么?写论文,考试意义何在。2.取得了什么指标外的进步?没有3.最有成就感的事情是什么?没有4.存在的问题,不足是什么?不知道一个学期下来,究
- 【密码学】抽象代数——群(学习笔记)
aching_
密码学学习笔记密码学信息安全抽象代数
群1、运算及关系运算的本质:两个元素经过一定的法则得到一个元素。(加减乘除)运算的规律:交换律、结合律、分配律交换律ab=ba结合律a(bc)=(ab)c分配律a∘(b+c)=a∘b+a∘c关系:非空集合A中对两个元素而言的一种性质,使A中任何两个元素,或有这种性质,或没有这种性质,二者必居其一。例:关系为“>”,A中任意两个元素,或大于,或不大于。(总有属于一种)等价关系:非空集合A中定义了关系
- 抽象代数笔记2——群
rsy56640
数学
CSDN前端有毒,Latex写出来排版全乱……………………………………………………………………………………………….群的定义:设GG是一个非空集合,“oo”是GG上的二元代数运算,称为乘法。如果下列条件成立,则称GG对它的乘法“oo”构成一个群(Group)。1.乘法“oo”满足结合律。2.对乘法“oo”,GG中有一个左幺元ee。即∀a∈G,eoa=a∀a∈G,eoa=a3.对乘法“oo”,GG中
- 【考研—密码学数论基础】环、群、域、多项式运算
GoesM
考研--密码学与网络安全c++数论考研密码学抽象代数
注:下述笔记根据学习通公开课程《数学的思维方式与创新》,部分内容并非严谨数学定义,个人理解居多。注2:第一遍学的时候理解得太片面了,面试被问到了才意识到理解得有问题,特此重新更正Pre:理解一些问题群?环?域?这些概念是在聊什么?它们都相当于是一种特殊的集合。抽象代数中的加法?乘法?本质是:定义新运算。它其实不同于我们平时知道的乘法和加法,但在逻辑上有一些相似之处。单位元:在集合中作乘法运算,类似
- Day26 大学专业怎么选? ——理科《高考》
邱真一
理科:注重理论研究,不太考虑应用实践,非常适合脑子好使、数理化高分的人学习。理科主要分为数理化生,和高中类似,但课业内容会从新手村调成了地狱模式。数学系数学系听起来就是那种高考数学145分的人才会选的系,他们是众人眼中的学霸,是人群里最健硕的大腿。【学习内容】数学系每天都是数学课:高等代数、数学分析、常微分方程、复变函数、泛函分析、拓扑学...随便讲一讲都能三天三夜不带重样的,非常充实。他们的日常
- 对高数的调侃!
听风在唱看花在舞
都说“从前有棵树,树上挂了很多人”下面就来数数挂了多少人!很久很久以前,在拉格朗日(Lagrange)照耀下,有几座城:分别是常微分方城(常微分方程)和偏微分方城(偏微分方程)这两座兄弟城,还有数理方城(数理方程)、随机过城(随机过程)。从这几座城里流出了几条溪,比较著名的有:柯溪(Cauchy)、数学分溪(数学分析)、泛函分溪(泛函分析)、回归分溪(回归分析)、时间序列分溪(时间序列分析)等。其
- 数据幂等
carl_zhao
在系统设计的时候,操作幂等设计是一点需要考虑的点。幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。用数学表达式来表达的话:f(x)=f(f(x))1、数据库幂等幂等性是后续多余的调用不会对系统数据的一致性进行破坏。在数据库操作一般会有增、删、查、改4类操作。下面我们来看这4
- 抽象代数 04.07 Jordan-Holder定理
longji
抽象代数抽象代数Jordan-Holder定理
http://www.icourses.cn南开大学《抽象代数》§4.7Jordan-Holder定理{\color{blue}{\text{\S4.7Jordan-Holder定理}}}§4.7Jordan-Holder定理可解群存在次正规序列使得因子都是素数阶循环群,且所有因子的阶的乘积为群G的阶。定义4.7.1.称群G的次正规序列{\color{blue}定义4.7.1.}称群G的次正规序列
- 二范数-特征值的意义-矩阵范数-向量范数-
nancy_princess
matlab
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,泛函是一个函数,其为矢量空间内的所有矢量赋予非零的正长度或大小。半范数反而可以为非零的矢量赋予零长度。矩阵范数:矩阵A的2范数就是A的转置乘以A矩阵特征根最大值的开根号;线性代数基础知识%1.B=P*A*inv(P),称A与B相似,相似矩阵具有相同的特征值%2.Q*Q'=I,称Q为正交矩阵,正交矩阵的乘积仍为正交矩阵向量范数
- 范数--L-P
jsc142915
笔记机器学习
什么是范数?范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。在数学上,范数包括向量范数和矩阵范数。向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小,就好比米和尺都可
- 范数-空间范数
彐雨
数学基础线性代数
范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。空间范数有限维空间上的范数具有良好的性质,主要体现在以下几个定理:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标的连续函数。有限维线性空间的所有范数都等价。实数域(或复数域)上的有限维
- 分布式服务的幂等性的个人见解
是王威啊
概念幂等的概念来自于抽象代数,比如对于一元函数来说,满足如下条件:f(f(x))=f(x)即可称为满足幂等性。在计算机科学中,一个操作多次执行和一次执行的影响相同,这样的操作即符合幂等性。在分布式的系统中,服务消费方调用服务提供方的接口,多次调用的结果应该与一次调用的结果相同,这就是分布式环境下的幂等性的语义。为什么都在强调幂等性?因为分布式服务系统有可能因为网络不稳定原因导致一个服务的接口被重复
- 抽象代数简介
景知育德
集合交集·并集·差集在中学阶段就学习过集合,部分内容不再赘述。以下是交集、并集、差集的概念:幂集设是一个集合,那么的所有子集为成员构成的几何成为是幂集,记作。笛卡尔积设是两个集合,定义集合称为与的笛卡尔积,又称卡氏积,集合积。基数集合中元素个数称为集合的基数,记作。如果是无限的,则,称是无限集,否则是有限集。关系集合中的元素相互之间可能有关系(也可能没有关系)。例如全校的学生构成一个集合,某些学生
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_