E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
吴恩达机器学习
吴恩达机器学习
笔记(一)——线性回归
线性回归学习笔记1.线性回归概述线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。其在金融、医疗等领域有着广泛的应用。y=ax+b一元线性回归可以看作是多元线性回归的一个特例,因此只要分析多元线性回归的特性。2.算法流程(1)选取特征值,设计假设函数。(2)代价函数。(3)进行梯度下降/正规方程。当我们需要用线性回归去解释一个现象或尝试做预测的时候,
tedist
·
2023-02-21 10:51
机器学习
吴恩达
Andrew
Ng
机器学习
线性回归
【深度学习】激活函数
上一章——认识神经网络新课P54介绍了强人工智能概念,P55到P58解读了矩阵乘法在代码中的应用,P59,P60介绍了在Tensflow中实现神经网络的代码及细节,详细的内容可以自行观看2022
吴恩达机器学习
milu_ELK
·
2023-02-17 12:09
吴恩达机器学习课程
深度学习
人工智能
吴恩达机器学习
(十五)分类、假设陈述、决策边界
文章目录1.分类2.假设陈述3.决策边界1.分类 我们开始讨论要预测的变量y是一个离散值情况下的分类问题。我们将使用一个逻辑回归算法,先从只包含0和1两类分类问题开始。 这个例子中的训练集是对肿瘤进行恶性或良性分类得到的数据。 我们可以做的是对于这个给定的训练集把我们学过的线性回归算法应用到这个数据集,用直线对数据进行拟合。 尝试改变一下问题,将横轴延长一点,假如有另一个训练样本在最右边。
计算机视觉从零学
·
2023-02-05 18:02
机器学习
机器学习
吴恩达机器学习
-SVM-为什么theta与边界boundary垂直
吴恩达教授的机器学习课程,第十三章支持向量机,大间隔分类器的数学原理中,没有解释为什么theta与边界boundary垂直,当时学的时候一头雾水,在查阅一些资料之后终于该清楚了,下面的推导过程。
wangyunjeff2
·
2023-02-05 18:59
吴恩达机器学习
课程笔记-Ⅰ
1.引言(Introduction)1.1Welcome1.2什么是机器学习(WhatisMachineLearning)1.3监督学习(supervisedlearning)1.4无监督学习(unsupervisedlearning)1.1Welcome随着互联网数据不断累积,硬件不断升级迭代,在这个信息爆炸的时代,机器学习已被应用在各行各业中,可谓无处不在。一些常见的机器学习的应用,例如:手写
玄九思
·
2023-02-04 10:56
机器学习
吴恩达机器学习
笔记(一)
文章目录引言1.1Welcome1.2Whatismachinelearning?1.3Supervisedlearning1.4Unsupervisedlearning引言1.1Welcome参考视频:P1Welcome总结:第一个视频主要讲述了什么是机器学习以及机器学习的一些应用,比如垃圾邮件识别、网页排序、产品推荐等等。1.2Whatismachinelearning?参考视频:P2What
cometsue
·
2023-02-04 10:22
吴恩达机器学习
机器学习
人工智能
吴恩达机器学习
Logistic Regression with a Neural Network mindset
LogisticRegressionwithaNeuralNetworkmindsetWelcometoyourfirst(required)programmingassignment!Youwillbuildalogisticregressionclassifiertorecognizecats.ThisassignmentwillstepyouthroughhowtodothiswithaNe
ZEVIN LI
·
2023-02-04 10:18
深度学习
神经网络
机器学习
吴恩达老师机器学习 1.1 Welcome!
吴恩达老师机器学习【(强推|双字)2022
吴恩达机器学习
Deeplearning.ai课程】1.1Welcome!欢迎!欢迎来到[最新]机器学习课程。
Ding Jiaxiong
·
2023-02-04 10:47
吴恩达老师【机器学习】
人工智能
OverflowError: Python int too large to convert to C long
吴恩达机器学习
今天学
吴恩达机器学习
中C1_W1_Lab05_Gradient_Descent_Soln的代码时,出现了溢出错误最后在b站视频中的评论中找到了解决方案吐槽一下,为什么百度搜索这个溢出错误,发现很多个都是同一个答案
zldomore
·
2023-02-02 11:14
python
jupyter
吴恩达机器学习
视频笔记——简单知识背景
1、生活的机器学习:电脑区分垃圾邮件淘宝的智能推荐照相时候的美颜什么是人工智能:ArthurSamuel(1959):部分特定代码赋予计算机自动学习的能力。世界上第一个机器学习的程序:Samuel编写的西洋棋程序2、监督学习和无监督学习回归问题案例1.房价预估横坐标:面积纵坐标:房价根据已知的答案,即已有的数据,在计算出房价的连续变化趋势,因此可以预测出相应面积的房价大小。分类问题:案例2.肿瘤判
xclhs
·
2023-02-02 10:42
机器学习
学习
机器学习
入门
算法
吴恩达
笔记
【经典】吴恩达——机器学习笔记001
【经典】吴恩达——机器学习笔记001机器学习(MachineLearning)笔记001学习地址:[中英字幕]
吴恩达机器学习
系列课程文字版参考及PPT来源:Coursera-ML-AndrewNg-Notes
superME1226
·
2023-02-02 10:40
机器学习
机器学习
算法
吴恩达机器学习
_第一周笔记
目录1IntroductionWelcomeWhatisMachineLearning?SupervisedLearning(监督学习)UnsupervisedLearning(无监督学习)2ModelandCostFunctionModelRepresentationCostFunction(代价函数)代价函数的图像3ParameterLearning(GradientDescent:梯度下降法
weixin_Saturn
·
2023-02-01 20:17
机器学习
算法
Jupyter Notebook图形不显示问题
今天在JupyterNotebook执行
吴恩达机器学习
-可视化举例的代码时,plt_intuition和soup_bowl函数对应的图形不显示。
zldomore
·
2023-01-31 14:59
jupyter
python
人工智能
单变量线性回归
本文档基于
吴恩达机器学习
课程单变量线性回归部分内容,记录自己对该部分内容的理解,并给出了MATLAB代码实现,以增强自己的理解,也方便后续查阅。
shandingdongren
·
2023-01-31 10:05
吴恩达机器学习
(一)——机器学习的定义及其主要类型
之前直接看吴恩达老师的深度学习课程,发现有很多看不明白的地方,所以还是从吴恩达老师讲的机器学习开始看,感觉自己真的基础知识太差了,很多东西都要慢慢补出来机器学习的定义定义搬运链接:link从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。机器学习的主要类型一、监督学习(
yangmishiwonvshen
·
2023-01-30 10:05
聚类
算法
【机器学习】
吴恩达机器学习
课程笔记LESSON2——欠拟合与过拟合
目录一、引言二、课堂笔记一、引言本节学习视频链接如下:3欠拟合与过拟合的概念_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1xb411M7sn?p=3&vd_source=1ac3c4db6c62f190a2b66f5032778fc9二、课堂笔记
Rachel MuZy
·
2023-01-30 08:26
机器学习在态势感知的应用
机器学习
人工智能
算法
吴恩达机器学习
课程笔记(11-18章)
第十一章11.1确定执行的优先级垃圾邮件分类器算法:为了解决这样一个问题,我们首先要做的决定是如何选择并表达特征向量xxx。我们可以选择一个由100100100个最常出现在垃圾邮件中的词所构成的列表,根据这些词是否有在邮件中出现,来获得我们的特征向量(出现为111,不出现为000),尺寸为100×1100×1100×1。为了构建这个分类器算法,我们可以做很多事,例如:收集更多的数据,让我们有更多的
最爱吃兽奶710
·
2023-01-30 08:24
人工智能
机器学习--线性回归
本文参考
吴恩达机器学习
课程第2章线性回归公式:代价公式(误差均值中的2用来抵消求导得来的2):目标:代价最小化这里演示单变量线性回归时:令,可对求导,此时方可求出实际上,由于代价函数经常含有2个及以上参数
下雨天的蓝
·
2023-01-29 09:16
深度学习第一周学习
先是看了几集
吴恩达机器学习
的课程,了解了机器学习的基本概念。机器学习中分为三个大块:监督学习、无监督学习和强化学习。而监督学习又分为回归算法和分类算法。通过课程也大致了解回归算法与分类算法的区别。
啊砉
·
2023-01-29 09:09
python
深度学习
吴恩达机器学习
:神经网络 | 多分类问题
上一周我们学习了逻辑回归,并使用它解决了简单的0/1分类问题。这周我们首先尝试使用逻辑回归来解决多分类问题(手写字符识别)。通过这个问题了解到,当我们需要解决特征量很大的非线性分类问题时(比如计算机视觉问题),我们原本假设高次特征的方法会使得特征数异常庞大,从而引出新的方法神经网络。为了更好的阅读体验你可以在网站中查看,点击课程视频你就能不间断地学习Ng的课程,关于课程作业的Python代码已经放
拼搭小怪
·
2023-01-28 16:04
吴恩达机器学习
课后作业5——怎么通过观察偏差和方差(bias vs variance)来调参
1.问题和数据在本练习中,您将实现正则化线性回归,并使用它来研究具有不同偏差-方差特性的模型。在练习的前半部分,您将实现正则化线性回归,利用水库水位的变化来预测从大坝流出的水量。在后半部分中,您将对调试学习算法进行一些诊断,并检查偏差和偏差的影响。 之前的题目中我们只用到了训练集,用训练集来训练模型,又用训练集来验证模型,这样的泛化能力就比较差。正常做法一般是先用训练集进行模型训练,训练好几个模型
学吧 学无止境
·
2023-01-28 16:45
机器学习
python
人工智能
算法
线性回归
吴恩达机器学习
课程笔记+代码实现(18)Python实现正则化的线性回归和偏差/方差(Programming Exercise 5)
ProgrammingExercise5:RegularizedLinearRegressionandBiasv.s.VariancePython版本3.6编译环境:anacondaJupyterNotebook链接:实验数据和实验指导书提取码:i7co本章课程笔记部分见:应用机器学习的建议(AdviceforApplyingMachineLearning)在本练习中,我们要实现正则化的线性回归,
geekxiaoz
·
2023-01-28 10:17
偏差
方差
正则化
Python
吴恩达机器学习
笔记(自己学的过程进行记录)
吴恩达机器学习
笔记(自己学着记)1.机器学习分类1.1监督学习1.1.1回归回归问题是在知道正确答案的基础上进行的,即给定的数据集是真实的一系列连续的值。
xiuyvshu
·
2023-01-27 02:19
机器学习
机器学习前向传播,反向传播
吴恩达机器学习
一、神经网络二、前向传播算法2.反向传播算法代价函数推导过程代码实现一、神经网络神经网络是模仿大脑神经元,建立的模型。
不自知的天才
·
2023-01-26 13:57
神经网络
python
机器学习
2019
吴恩达机器学习
课程笔记——week1——1.Introduction
2019
吴恩达机器学习
课程笔记——week1——1.Introduction一、WhatisMachineLearning?
weixin_30907523
·
2023-01-24 16:44
吴恩达机器学习
13-聚类
吴恩达机器学习
13-聚类1.无监督学习样本不带标记在监督学习中,数据有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,数据没有附带任何标签。
小y同学在学习
·
2023-01-24 15:12
吴恩达机器学习系列笔记
聚类
机器学习
算法
k-means
吴恩达机器学习
课后作业——异常检测和推荐系统(协同过滤算法)
Anomalydetection(异常检测)一、作业内容在本练习中,我们将使用高斯模型实现异常检测算法,并将其应用于检测网络上的故障服务器。在这个练习中,您将实现一个异常检测算法来检测服务器计算机中的异常行为。这些特性测量每个服务器的响应的吞吐量(mb/s)和延迟(ms)。当服务器运行时,您收集了m=307个关于它们行为的示例,因此有一个未标记的数据集[z(1),.,(m)]。您怀疑这些示例中的绝
荭凯
·
2023-01-24 15:11
机器学习
算法
人工智能
吴恩达机器学习
[14]-无监督学习之 K均值聚类算法
机器学习系统设计无监督学习unsupervisedlearningK-Means算法K-Meansalgorithm优化目标Optimizationobjective随机初始化randominitialization选取聚类数量性能度量扩充-原型聚类无监督学习unsupervisedlearning类型定义差异监督学习给定一些带标签的数据,用假设函数去拟合它,寻找能够区分正样本和负样本的决策边界1
踏归1234
·
2023-01-24 15:08
机器学习
机器学习
学习
聚类
吴恩达机器学习
系列五(聚类和降维)
吴恩达机器学习
系列五聚类(Clustering)无监督学习K-均值算法优化目标随机初始化选择聚类数降维(DimensionalityReduction)动机一:数据压缩动机二:数据可视化主成分分析问题主成分分析算法选择主成分的数量重建的压缩表示主成分分析法的应用建议聚类
酸菜鱼_2323
·
2023-01-24 15:37
机器学习
吴恩达机器学习
2022新版
2022
吴恩达机器学习
第一周一.机器学习的定义二.机器学习的分类2.1.监督学习【回归算法】【分类算法】三.lossfunction3.1.损失函数公式四.梯度下降4.1.梯度下降算法4.2.理解梯度下降
X'- Shirley. X
·
2023-01-24 15:35
人工智能
python
【CV】
吴恩达机器学习
课程笔记第18章
本系列文章如果没有特殊说明,正文内容均解释的是文字上方的图片机器学习|Coursera
吴恩达机器学习
系列课程_bilibili目录18应用案例:照片OCR18-1问题描述与流程(pipeline)18-
Fannnnf
·
2023-01-24 11:07
吴恩达机器学习课程笔记
机器学习
人工智能
吴恩达机器学习
Day5
逻辑回归的梯度下降:对w和b求偏导结果与线性回归是相似的(神奇);但事实上并不一样:训练逻辑回归模型:sklearn函数过拟合(overfitting):即使非常适合训练集但也因为太适合数据,因此是过拟合(高方差);这个模型不具有泛化到新样本的能力;欠拟合(高偏差);适中(泛化);解决过拟合:①更多的训练数据;②是否可以使用更少的特征;③使用正则化来减小参数的大小(better);线性回归正则化:
Tezzz
·
2023-01-23 19:25
人工智能
深度学习
吴恩达机器学习
笔记:手搓线性回归(梯度下降寻优)
概念就不介绍了,记录下公式推导和代码实现,以及与最小二乘的比较。吴恩达老师课程中使用一个参数theta保存两个变量,不过我好像没把中间变量的形状对齐,所以最后实现了两个参数的版本。代码:importtimeimportnumpyasnpimportpandasimportmatplotlib.pyplotasplt#随机种子rd=np.random.RandomState(round(time.t
七月是你的谎言..
·
2023-01-23 15:11
Python基础
笔记
线性回归
回归
吴恩达机器学习
打卡day5
本系列文档按课程视频的章节(P+第几集)进行分类,记录了学习时的一些知识点,方便自己复习。课程视频P43——非线性假设图1表示当变量特别多,比如在计算机视觉图像识别上,就算是50x50的一小块区域就包含2500个像素,每个像素算做一个变量,按灰度计算每个像素就有255个颜色,如果按RGB来计算每个像素就有7500个颜色,如此以来总的特征就超过了3million个,因此用线性方式表示就不合适了,会导
学吧 学无止境
·
2023-01-21 21:32
机器学习
人工智能
深度学习
回归
分类
吴恩达机器学习
打卡day4
本系列文档按课程视频的章节(P+第几集)进行分类,记录了学习时的一些知识点,方便自己复习。课程视频P32——分类图1表示最基础的分类原理,当类别只有0,1两种情况时,以0.5为阈值(threshold,当hθ(x)h_{\theta}(x)hθ(x)超过0.5时,就判定为1,否则为0。图1 但是这种方式过于“一刀切”,如图2,当出现一个很横坐标hθ(x)h_{\theta}(x)hθ(x)很大的数
学吧 学无止境
·
2023-01-21 21:31
机器学习
人工智能
深度学习
回归
分类
吴恩达机器学习
打卡day9
本系列文档按课程视频的章节(P+第几集)进行分类,记录了学习时的一些知识点,方便自己复习。课程视频P83—主成分分析构思PCA(PrincipalComponentAnalysisProblemFormulation)线性回归和PCA的最优模型都是最小化某个值,只是线性回归最小化预测值和真实值之间的误差,而PCA最小化投影误差。PCA三维和PCA二维原理相同,都是最小化投影误差。图1 图2 课程视
学吧 学无止境
·
2023-01-21 21:01
机器学习
计算机视觉
人工智能
算法
吴恩达机器学习
打卡day3
本系列文档按课程视频的章节(P+第几集)进行分类,记录了学习时的一些知识点,方便自己复习。课程视频P22图1表示使用了不同次数的变量在此情形下,若要使用梯度下降法,则需要先对数据进行特征缩放,不然没有可操作性。图1 图2使用不同的函数来代表房价预测曲线。图2 课程视频P23——正规方程图3形象的展示了梯度下降法求解代价函数最小值到最后的情况,对于普通的一元二次函数,通过求导、令式子等于0
学吧 学无止境
·
2023-01-21 21:31
机器学习
人工智能
吴恩达机器学习
打卡day2
本系列文档按课程视频的章节(P+第几集)进行分类,记录了学习时的一些知识点,方便自己复习。课程视频P11图1表示了梯度下降方法和线性回归模型,而我们要做的就是把它俩结合起来,用梯度下降法来使这个线性回归模型达到最小值。画红线的部分为偏导数,是重点要讨论的部分,在下一张图展开。图1 图2将梯度下降法中的偏导函数的求解分步展开写了出来。图2 图3形象的展示了梯度下降法的求解方式,在山顶不断地
学吧 学无止境
·
2023-01-21 21:31
机器学习
人工智能
吴恩达机器学习
day02单变量线性回归
01模型描述为了更好的描述监督学习问题,需要给出训练集并以此构建一个模型。下面先学习几个符号:m:代表的是训练集有几个x:代表的是输入的特征y:代表的是输出,也就是预测的目标变量h:代表假设函数,引导从x得到y的函数02代价函数(平方误差函数)可以通过代价函数来衡量假设函数的准确性。代价函数取值越小,假设函数就越准确。代价函数有助于我们弄清楚如何把最有可能的直线与我们的数据相拟合。在线性回归中,我
念~旭
·
2023-01-21 21:01
吴恩达机器学习
机器学习
吴恩达机器学习
day01初识机器学习
01监督学习监督学习是指我们给算法一个数据集,其中包含了正确的答案。算法的目的就是给出更多的正确答案。回归是指我们设法预测连续值的属性,可以应用在预测房子价格等方面。分类是指我们设法预测离散值的输出(0或1),可以应用在判断账户是否被入侵等方面。02无监督学习无监督学习也会给一个数据集,但是数据集不包括正确答案(里面的数据要么都有相同的标签要么都没有标签)。无监督学习会将数据分为一个个不同的簇,这
念~旭
·
2023-01-21 21:30
吴恩达机器学习
机器学习
吴恩达机器学习
第三章作业答案 part1:多类别逻辑回归
importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltfromscipy.ioimportloadmatfromsklearn.metricsimportclassification_reportfromscipy.optimizeimportminimizedefsigmoid(z):return1/(1+np.exp(-z))#向
枸空
·
2023-01-21 21:30
机器学习
逻辑回归
python
吴恩达机器学习
day10(聚类(Clustering))
聚类一.无监督学习:应用:二.K-均值算法三.优化目标四.随机初始化五.选择聚类数一.无监督学习:聚类算法,非监督学习算法在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:在这里我们有一系列点,却没
晨沉宸辰
·
2023-01-21 21:27
吴恩达机器学习笔记
聚类
算法
机器学习
吴恩达机器学习
day12(异常检测)
异常检测一.问题的动机二.高斯分布三.算法四.开发和评价一个异常监测系统五.异常检测与监督学习对比六.选择特征一.问题的动机什么是异常检测呢?为了解释这个概念,让我举一个例子吧:假想你是一个飞机引擎制造商,当你生产的飞机引擎从生产线上流出时,你需要进行QA(质量控制测试),而作为这个测试的一部分,你测量了飞机引擎的一些特征变量,比如引擎运转时产生的热量,或者引擎的振动等等。这样一来,你就有了一个数
晨沉宸辰
·
2023-01-21 21:27
吴恩达机器学习笔记
机器学习
python
算法
吴恩达机器学习
day13(推荐系统(Recommender Systems))
推荐系统(RecommenderSystems一.问题形式化二.基于内容的推荐系统三.协同过滤四.协同过滤算法五.向量化:低秩矩阵分解六.推行工作上的细节:均值归一化一.问题形式化我们从一个例子开始定义推荐系统的问题。假使我们是一个电影供应商,我们有5部电影和4个用户,我们要求用户为电影打分。前三部电影是爱情片,后两部则是动作片,我们可以看出Alice和Bob似乎更倾向与爱情片,而Carol和Da
晨沉宸辰
·
2023-01-21 21:27
吴恩达机器学习笔记
python
机器学习
算法
吴恩达机器学习
作业2(逻辑回归)
逻辑回归一.知识回顾二.题目二.编程的设计【1】引入一些包【2】准备数据【3】sigmoid函数【4】costfunction(代价函数)1.设置参数【5】gradientdescent(梯度下降)1.损失梯度的推导2.代码【6】拟合参数【7】用训练集预测和验证【7】寻找决策边界1.输出最后拟合的参数2.根据边界公式计算X×θX\times\thetaX×θ3.画出图形三.正则化逻辑回归特征映射对
晨沉宸辰
·
2023-01-21 21:26
吴恩达机器学习作业
机器学习
python
逻辑回归
吴恩达机器学习
day4(正则化(Regularization))
正则化一过拟合问题二代价函数三正则化线性回归四正则化的逻辑回归模型一过拟合问题正则化(regularization)的技术,它可以改善或者减少过度拟合问题。如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为0),但是可能会不能推广到新的数据。下图是一个回归问题的例子:第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型
晨沉宸辰
·
2023-01-21 21:56
吴恩达机器学习笔记
机器学习
吴恩达机器学习
day5(神经网络:表述)
神经网络学习:表述一.非线性假设【1】前提引入【2】实例体验二.神经元和大脑三.模型表示1【1】了解实际神经系统【2】模型思考:三.模型表示2四.特征和直观解释1一.非线性假设【1】前提引入我们之前学的,无论是线性回归还是逻辑回归都有这样一个缺点,即:当特征太多时,计算的负荷会非常大。下面是一个例子:使用非线性的多项式项,能够帮助我们建立更好的分类模型。【1】假设我们有非常多的特征,例如大于100
晨沉宸辰
·
2023-01-21 21:56
吴恩达机器学习笔记
神经网络
机器学习
吴恩达机器学习
day1(了解机器学习)
初步了解机器学习前言了解机器学习【1】常见的机器学习的体现:【2】机器学习的领域:【3】机器学习的应用:什么是机器学习?监督学习[1]定义[2]了解[3]基本思想无监督学习定义:例子:总结:前言了解机器学习【1】常见的机器学习的体现:打开谷歌、必应搜索到你需要的内容,正是因为他们有良好的学习算法。谷歌和微软实现了学习算法来排行网页每次,你用Facebook或苹果的图片分类程序他能认出你朋友的照片,
晨沉宸辰
·
2023-01-21 21:26
吴恩达机器学习笔记
机器学习
吴恩达机器学习
Day4
有监督类算法②:分类算法:输出结果常常是:"0"or"1";"yes"or"no";"ture"or"false";"negativeclass"or"positiveclass";用线性回归算法解决分类,可能会奏效,但通常效果不佳;例如:逻辑回归:使用最广泛的分类算法;相比于线性回归,逻辑回归是一条曲线;需要引入一个重要的数学函数:sigmoid函数(逻辑函数);决策边界:令决策函数z=0?决策
Tezzz
·
2023-01-21 21:49
人工智能
python用电预测_Python预测发电厂电能输出--基于多元线性回归模型-站长资讯中心...
前言最近有在学习网易云课堂上《
吴恩达机器学习
》这门课程,受益匪浅,然后打算将有关线性回归模型的知识点总结下来,也就有了本文.若存在错误的地方,还请指正,谢谢!
weixin_39728213
·
2023-01-21 15:50
python用电预测
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他