《统计学习方法》学习笔记 第十六章 PCA(principal component analysis)
目录1总体主成分分析1.1基本想法1.2定义和导出1.3主要性质1.4主成分的个数1.5规范化变量的总体主成分2样本主成分分析2.1样本主成分2.2相关矩阵的特征值分解方法2.3数据矩阵的奇异值分解算法总结1总体主成分分析1.1基本想法(以前学过,很好理解,不放了)1.2定义和导出x=(x1,x2,⋯ ,xm)T\bm{x}=(x_1,x_2,\cdots,x_m)^Tx=(x1,x2,⋯,xm)