pandas用众数填充缺失值_【机器学习】scikit-learn中的数据预处理小结(归一化、缺失值填充、离散特征编码、连续值分箱)...
一.概述1.数据预处理数据预处理是从数据中检测,修改或删除不准确或不适用于模型的记录的过程可能面对的问题有:数据类型不同,比如有的是文字,有的是数字,有的含时间序列,有的连续,有的间断。也可能,数据的质量不行,有噪声,有异常,有缺失,数据出错,量纲不一,有重复,数据是偏态,数据量太大或太小。数据预处理的目的:让数据适应模型,匹配模型的需求。2.sklearn中的数据预处理sklearn中包含众多数