- 数论——扩展欧几里得算法
NOI_yzk
欧几里得&拓展欧几里得(Euclid&Extend-Euclid)欧几里得算法(Euclid)背景:欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。——百度百科代码:递推的代码是相当的简洁:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}分析:方法说了是辗转相除法,自然没有什么好介绍的了。。Fresh肯定会觉得这样递归下去会不会爆栈?实际上在
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- 拓展欧几里得法求逆元
DBWG
板子算法数据结构数学数论
板子:x即为最终答案,x可能为负数,加模数即可乘法逆元-OIWiki(oi-wiki.org)voidexgcd(inta,intb,int&x,int&y){if(b==0){x=1,y=0;return;}exgcd(b,a%b,y,x);y-=a/b*x;}使用:exgcd(a,n+1,x,y);//x就是逆元while(x<=0)x+=n+1;原理:最大公约数-OIWiki(oi-wiki
- 专题讲座3 数论+博弈论 学习心得
繁水682
专题讲座c++
先放一下眼泪学长的精华内容汇总。PPT笔记汇总:【小组专题四:素数】pi(x),狄利克雷关于等差数列中素数定理,梅森素数,素数证明_溢流眼泪的博客-CSDN博客【算法讲2:拓展欧几里得(简略讲)】求解ax+by=c_溢流眼泪的博客-CSDN博客中国剩余定理学习笔记-MashiroSky-博客园【训练题23:中国剩余定理】猜数字|P3868[TJOI2009]_溢流眼泪的博客-CSDN博客(扩展)B
- 数论-乘法逆元【裴蜀定理+欧拉定理/费马小定理】
舍舍发抖
数论算法
具体逆元相关看这个博客,更详细裴蜀定理定义:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。(根据拓展欧几里得定理得出ax+by=gcd(a,b))这篇博客提到拓展欧几里的公式及推导这篇也参考一下一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1证明这里就不详细说了,参考博客:http
- 费马小定理&费马大定理
Wkzlike
算法
(1)费马小定理结论:结论是若存在整数a,p且gcd(a,p)=1,即二者互为质数,则有a(p-1)≡1(modp)。(这里的≡指的是恒等于,a(p-1)≡1(modp)是指a的p-1次幂取模与1取模恒等),再进一步就是ap≡a(modp)。继续学习:中国剩余定理、拓展欧几里得(exgcd)、求除法逆元、费马小定理(2)费马大定理结论:又被称为“费马最后的定理”,常见的表述为当整数n>2时,关于x
- 拓展欧几里得和小费马定理求逆元以及推导(学习总结)
无_问
数论学习gcd
相关概念引入:逆元:假如ax≡1(modm)则称a关于1模m的逆元为x。当然了x有解的前提是gcd(a,m)=1。小费马定理:p为质数,ap≡a(modp),若gcd(a,p)=1,则a(p-1)≡1(modp)-------a*a(p-2)≡1(modp)所以a(p-2)为a的逆元;结合快速幂求a(p-2)longlongquick_pow(inta,intb){longlongsum=1;wh
- 大数据安全 | 期末复习(上)| 补档
啦啦右一
#大数据安全大数据与数据分析单例模式
文章目录概述⭐️大数据的定义、来源、特点大数据安全的含义大数据安全威胁保障大数据安全采集、存储、挖掘环节的安全技术大数据用于安全隐私的定义、属性、分类、保护、面临威胁安全基本概念安全需求及对应的安全事件古典密码学里程碑事件扩散和混淆的概念攻击的分类模运算移位加密仿射加密维吉尼亚密码DES混淆与扩散Feistel加密DES密钥生成DES流程数论欧几里得算法拓展欧几里得算法欧拉函数有限域运算AES密钥
- 【算法总结】欧几里得算法与拓展欧几里得算法 小结
荷叶田田_
学习笔记与用法总结
拓展欧几里得算法1、欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}2、拓展的欧几里德算法:对于不完全为0的非负整数a,b,gcd(a,b)表示a,b的最大公约数,必然存在整数对x,y,使得gcd(a,b)=ax+by。intgcd(inta,intb,int&x,int&y){if(b==0){
- 《洛谷深入浅出进阶篇》 欧几里得算法,裴蜀定理,拓展欧几里得算法————洛谷P1516 青蛙的约会
louisdlee.
洛谷深入浅出进阶篇算法数论c++gcd拓展欧几里得洛谷深入浅出进阶篇
本文章内容:欧几里得算法:gcd(a,b)=gcd(b,a%b)由于篇幅问题,在这里就不加以证明,可以上b站自己搜一下。由欧几里得算法我们可以很清楚的知道,a,b的最大公约数,等于b,a%b的最大公约数裴蜀定理对于任意一对整数a,b,存在整数对(x,y)使不定方程ax+by=gcd(a,b)有解。由裴蜀定理引出的定理:若对于任意一对整数a,b,存在整数对(x,y)使不定方程ax+by=c有解,那么
- 算法基础课-数学知识
Andantex
ACwing算法课笔记算法
数学知识第四章数学知识数论质数约数欧拉函数欧拉定理与费马小定理拓展欧几里得定理裴蜀定理中国剩余定理快速幂高斯消元求组合数卡特兰数容斥原理博弈论Nim游戏SG函数第四章数学知识数论质数质数判定:试除法,枚举时只枚举i≤nii\leq\frac{n}{i}i≤in即可(这里是防止整数溢出所以没有算平方)分解质因数:试除法首先nnn中至多只包含一个大于n\sqrtnn的质因子所以仍然可以枚举i≤nii\
- 同余-费马小定理-乘法逆元与线性同余方程
litian355
数学相关算法
update1:初等数论部分(是对下面拓展欧几里得算法的铺垫):update2:由于第一开始学习理解不够深入,出现众多错误,现在看来真是误人子弟(实在太烂了),现在修改了一些错误,同时润滑了一下语言。线性方程ax+by=gcd(a,b)的解:假设特解(x0,y0)是方程组的一组解,d=gcd(a,b),那么通解就是x=x0+b/d*k,y=y0-a/d*k;例如10x+35y=5,的一组特解(-3
- RSA 加密算法在C++中的实现 面向初学者(附代码)
EUREKA-X
c++算法密码学网络安全
概述博文的一,二部分为基础知识的铺垫。分别从密码学,数论两个方面为理解RSA算法做好了准备。第三部分是对RSA加密过程的具体介绍,主要涉及其密钥对(key-pair)的获取。前三个部分与编程实践无关,可以当作独立的关于RSA加密算法的介绍。第四部分开始介绍在编程层面实现RSA算法的基础知识,主要涉及一些算法,如拓展欧几里得算法,米勒-拉宾素性检验算法,是为C++中实现RSA加密所作的铺垫。第五部分
- 裴蜀定理-拓展欧几里得算法--夏令营
yyt_cdeyyds
算法
题目知识点1.裴蜀定理:欧几里得算法=gcd=辗转相除法拓展欧几里得算法=exgcd=裴蜀定理2.证明:3..代码:intexgcd(inta,intb,int&x,int&y){if(!b){x=1,y=0;returna;}intd=exgcd(b,a%b,y,x);y-=a/b*x;returnd;}答案#include#include#includeusingnamespacestd;in
- CCPC桂林E - Draw a triangle
Knight840
c++算法开发语言
题意:给出两点,求在网格点上找第三点满足构成三角形正数面积最小思路:两个向量(a,b),(x,y)面积表达(-bx+ay)/2,则题意变为求(-bx+ay)表达式的最小解,斐蜀定理可知,一个二元一次方程的最小解c为形如ax+by这样的式子中的a,b的最大公因数的倍数,所以只需根据拓展欧几里得法求x,y/*题意:给出两点,求在网格点上找第三点满足构成三角形正数面积最小思路:两个向量(a,b),(x,
- Python算法设计 - 拓展欧几里得算法
小鸿的摸鱼日常
python算法设计算法python
目录一、拓展欧几里得算法二、Python算法实现三、作者Info一、拓展欧几里得算法扩展欧几里德算法是数论中最经典的算法之一,其目的用来解决不定方程。用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=GCD(a,b)什么是不定方程?不定方程(丢番图方程)是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等)的方程或方程组。二、Python算法实现defg
- 【总结】不定方程ax+by=c的解
仰望星空的蚂蚁
先解方程ax+by=gcd(a,b)的特解,再还原到原方程,写出通解方法:拓展欧几里得(递归降系数)首先对于ax+by=gcd(a,b),当b=0时,x=1,y=0是一组解(递归算法出口)对于一般情况:ax1+by1=gcd(a,b)bx2+(a%b)y2=gcd(b,a%b)系数a,b降低了(最终a%b为0),注意观察x1,y1,x2,y2数量关系(假定求得了x2,y2)因为gcd(a,b)=g
- 拓展欧几里得证明
不给赞就别想跑哼
看了许久书终于从似懂非懂走了出来设ax+by=gcd(a,b),解出符合条件的x,y;当b=0时,很显然有一组必然解,x=1,y=0,即1a+00=gcd(a,b)=a;即我们讨论b!=0的情况;ax+by=gcd(a,b)=gcd(b,a%b);令一组解x1,y1使得x1b+y1(a%b)=gcd(b,a%b)=gcd(a,b)=ax+by;a/b=k…r,k=a/b下取整,所以a%b=a-(a
- 乘法逆元 +数论分块 +平方和公式
Star_.
蓝桥杯java开发语言
年后准备学习啦,开学还得准备考试。乘法逆元:因为涉及到除法,所以取余这个操作就错误。所以如果我们要求(a/b)%mod,我们可以假设(a/b)%mod=a*c%mod那么c就是b的逆元。怎么求逆元呢,其实有很多方法,这里我先学习了两种比较常用的方法。逆元的定义给定正整数a,p,如果有,且a与p互质,则称x的最小正整数解为a模p的逆元。方法一:拓展欧几里得算法不要求模p为质数,所以我一般会用这种方法
- RSA加密算法 python实现
特务别iDD
python
基于python实现rsa加密算法,并生成可执行程序exeimportPySimpleGUIassg#拓展欧几里得算法求最大公约数defex_gcd(a,b,arr):ifb==0:arr[0]=1arr[1]=0returnar=ex_gcd(b,a%b,arr)tmp=arr[0]arr[0]=arr[1]arr[1]=tmp-int(a/b)*arr[1]returnr#将最大公因数回代辗转
- 简述逆元+两种算法
circoding
2019hpu暑期集训逆元
逆元:用于计算式子(a/b)modp,当b十分大的时候,可以利用b的逆元inv(b),原式即为(a*inv(b)modp)。一个类似于b的倒数的家伙,要注意的是b的逆元并不唯一,而且要说成是b模p的情况下逆元是多少。逆元不是一定存在的,必须是b与p互质(两者公因数仅有1)才存在逆元。求解逆元的方法,目前博主学了两个:利用费马小定理快速幂求逆元。利用拓展欧几里得算法求逆元。1.利用费马小定理求解逆元
- 组合数取模算法(杨辉三角+拓展欧几里得求逆元+费马小定理求逆元+阶乘逆元递推)
retrogogogo
ACM数论算法组合数拓展欧几里得快速幂费马小定理
组合数算法简述:杨辉三角形+拓展欧几里得求逆元+费马小定理求逆元+阶乘逆元递推组合数基本公式杨辉三角形法逆元法-1.拓展欧几里得求逆元-2.费马小定理求逆元-3.阶乘逆元递推-4.逆元法组合数取模总结模板前言: 在很多问题中都需要计算组合数,在小规模计算中我们可以直接使用组合数公式稍加算法优化进行计算,但在大规模取模计算时往往需要更加快速的算法,接下来主要介绍杨辉三角形法、逆元法(拓欧和费马小定
- 数论—模运算的逆元
十甫Com
数论逆元模运算拓展欧几里德费马小定理
目录有关模运算定义运算规则逆元定义使用方法求逆元的方法枚举法拓展欧几里得(Extend-Eculid)费马小定理(Fermat'slittletheorem)注意有关模运算在信息学竞赛中,当答案过于庞大的时候,我们经常会使用到模运算(ModuloOperation)来缩小答案的范围,以便输出计算得出的答案。定义给定一个正整数p,任意一个整数n,那么一定存在等式:n=k*p+r;其中k、r是整数,且
- 深入浅出RSA在CTF中的攻击套路
CTF小白
CTF
0x01前言本文对RSA中常用的模逆运算、欧几里得、拓展欧几里得、中国剩余定理等算法不展开作详细介绍,仅对遇到的CTF题的攻击方式,以及使用到的这些算法的python实现进行介绍。目的是让大家能轻松解决RSA在CTF中的套路题目。0x02RSA介绍介绍首先,我这边就不放冗长的百度百科的东西了,我概括一下我自己对RSA的看法。RSA是一种算法,并且广泛应用于现代,用于保密通信。RSA算法涉及三个参数
- 2021-11-13(每周总结)
killer_queen4804
c++笔记算法动态规划算法数学
这一星期做了点背包,主要还是学了下数论gcd,lcm,拓展欧几里得,逆元(没大做题目,只是看了遍,也没有明白书上的例题是怎样利用逆元的),素数和素数筛选的方法,做的题还是不够多,只是对素数筛有点印象,还看了点组合数学,刚开了个头luogup4138排序就按钩数从大到小排,之后就是01背包了,把挂钩数作为容量,并且如果容量小于a[i]的话,就强行认为是1,转移方程为dp[i][j]=max(dp[i
- ACM数学题目2 同余方程(拓展欧几里得算法)
大金枪鱼罐头
ACM数学题目acm竞赛算法数学递归算法c++
声明:题目来源:https://www.luogu.com.cn/problem/P1082题目描述求关于xxx的同余方程ax≡1modbax\equiv1\textrm{mod}bax≡1modb的最小正整数解。输入格式一行,包含两个正整数a,ba,ba,b用一个空格隔开。输出格式一个正整数x0x_0x0,即最小正整数解。输入数据保证一定有解。输入输出样例输入#1310输出#17说明/提示【数据
- 复习小结--小康迷糊了--21.4.21
小康迷糊了
算法
小康迷糊了的复习小结1.字典树2.线段树3.KMP算法4.字符串哈希5.二分图匹配6.最长递增子序列7.最长公共子串/子序列8.拓展欧几里得9.快速幂10.组合数学问题(卡特兰数)11.树的直径12.最短路问题13.最小生成树14.并查集15.欧拉回路16.连通块问题17.多源bfs问题18.差分,二分19.前缀和1.字典树模板#includeusingnamespacestd;constintN
- 密码学期末计算题复习
带问号的小朋友
密码学密码学算法线性代数矩阵
主要三大块目录1.古典密码移位密码:代换密码欧拉函数:乘法逆元用拓展欧几里得求解详细过程:群Zm内所有元素关于模26的乘法逆元如下:仿射密码:希尔密码:定义在Zm上的矩阵求逆:2.对称密码体制AES加密的工作模式3.非对称密码体制拓展欧几里得求解同余方程组本原元求解RSA算法过程ElGamal加密算法1.古典密码移位密码:E(x)=(x+K)mod26D(x)=(x-K)mod26代换密码是指先建
- ACM Weekly 4(待修改)
C_eeking
ACM训练
ACMWeekly4涉及的知识点GCD与LCMGCD和LCM质因数分解与互质拓展欧几里得算法拓展欧几里得应用算数基本定理及其推论算数基本定理推论1:求约数个数推论2:求约数之和欧拉函数同余费马小定理欧拉定理乘法逆元难题解析拓展ICPC线上测试赛中国剩余定理大数小数定理PollardRho算法涉及的知识点第四周练习主要涉及GCD与LCM(欧几里得、质因数分解、互质的概念)、算数基本定理及其推论、,欧
- Strange Optimization
xzx9
数论牛客
题目意思是要求在t固定的情况下,i,j任意取值,求得f(t)的所有最小值中的最大值。对于i/n-j/m而言,根据拓展欧几里得的有解的条件,那么它可以表示gcd(n,m)/(nm)的任意倍数,那么当t是固定的时,t到和它最近的两个gcd(n,m)/(nm)的倍数之间的距离中的最小值必然小于等于gcd(n,m)/2*(nm),所以,要求最大的f(t),那么其值应该为gcd(n,m)/2(nm),若分子
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D