- 4×4矩阵键盘详解(STM32)
辰哥单片机设计
STM32传感器教学矩阵计算机外设stm32嵌入式硬件单片机传感器
目录一、介绍二、传感器原理1.原理图2.工作原理介绍三、程序设计main.c文件button4_4.h文件button4_4.c文件四、实验效果五、资料获取项目分享一、介绍矩阵键盘,又称为行列式键盘,是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。在行线和列线的每一个交叉点上设置一个按键,因此键盘中按键的个数是4×4个。这种行列式键盘结构能够有效地提高单片机系统中I/O口的利用率,节约单
- 三对角线型行列式的求法
Mr-Apple
笔记线性代数矩阵算法
三对角线型行列式摘要典型例题练习题参考答案摘要笔者在复习高等代数行列式这章时,发现三对角行列式问题是行列式计算中经常出现的一类行列式,部分考研院校也曾直接出过三对角行列式的计算,亦或是三对角行列式的变体问题.本文主要介绍了一种通常情况下三对角行列式的解法,即采用特征根法来求解行列式的通项公式.例1:计算nnn阶行列式(ac≠0)(ac\neq0)(ac=0)Dn=∣bc0…000abc…0000
- 线性代数 --- LU分解(Gauss消元法的矩阵表示)
松下J27
LinearAlgebra线性代数矩阵LU分解高斯消元矩阵运行gaussianLU
Gauss消元法等价于把系数矩阵A分解成两个三角矩阵L和U的乘法首先,LU分解实际上就是用矩阵的形式来记录的高斯消元的过程。其中,对矩阵A进行高斯消元后的结果为矩阵U,是LU分解后的两个三角矩阵中其中之一。U是一个上三角矩阵,U就是上三角矩阵uppertriangle的首字母的大写。高斯消元的每一步都能用基本消元矩阵E来表示。而所有的E都可以收录在一个矩阵当中,我这里叫他Z矩阵。Z矩阵就是集所有基
- 线性代数——特征值与特征向量的性质
lwh 98+106
线性代数算法机器学习
(1)设A为方阵,则A与ATA^{T}AT有相同的特征值。此处用到了两个关键性质,一:单位阵的转置为其本身,二:转置并不改变行列式的值。(2):设n阶方阵A=(aija_{ij}aij)的n个特征值为λ1\lambda_{1}λ1,λ2\lambda_{2}λ2,…λn\lambda_{n}λn,则λ1+λ2+λ3+...λn=a11+a22+a33+...+ann\lambda_{1}+\lam
- 高等代数精解【9】
叶绿先锋
基础数学与应用数学线性代数矩阵
文章目录向量空间与矩阵矩阵的行列式矩阵A的秩保持不变方阵的行列式线性无关的条件1.线性组合为零向量的唯一性2.矩阵的秩3.几何解释(对于二维和三维空间)4.行列式(对于方阵)总结矩阵的非零子式基础重要性例子注意事项非奇异矩阵(也称为可逆矩阵或满秩矩阵)定义性质例子结论逆矩阵的计算高斯-约旦消元法Julia代码使用伴随矩阵和行列式的倒数来计算逆矩阵参考文献向量空间与矩阵矩阵的行列式矩阵A的秩保持不变
- 数学基础 -- 线性代数之伴随矩阵
sz66cm
线性代数矩阵
伴随矩阵1.代数余子式首先我们需要理解什么是代数余子式。对于一个n×nn\timesnn×n的方阵AAA,代数余子式MijM_{ij}Mij是指从矩阵AAA中删除第iii行和第jjj列后,剩下的子矩阵的行列式。假设有一个3×33\times33×3的矩阵:A=(a11a12a13a21a22a23a31a32a33)A=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_
- 高数知识补充----矩阵、行列式、数学符号
chxin14016
笔记高数算法线性代数
矩阵计算参考链接:矩阵如何运算?——线性代数_矩阵计算-CSDN博客矩阵计算:【前找行,后找列,相乘相加】。行列式计算参考链接:实用的行列式计算方法——线性代数(det)_det线性代数-CSDN博客参考链接:行列式的计算方法(含四种,看完就会!)-CSDN博客一、对角线法▍以三阶行列式为例:①将第一、二列平移到行列式右侧②如图做出六条斜对角线③对角线上的元素相乘,红色相加的和减去蓝色相加的和D3
- 数学基础 -- 线性代数之行阶梯形
sz66cm
线性代数机器学习人工智能
行阶梯形行阶梯形(RowEchelonForm,REF)是线性代数中用于简化矩阵形式的一种方法,常用于求解线性方程组。矩阵经过行变换(如高斯消元法)后可以转换为行阶梯形,它具有以下特点:行阶梯形的定义零行在矩阵的底部:矩阵中如果存在一行全为零的行,这些行必须在矩阵的最下方。每一非零行的首个非零元素为1:这一元素称为该行的主元(leadingentry)。主元是从左到右的第一个非零元素,并且主元必须
- 数学基础 -- 线性代数之行列式不变性推导
sz66cm
线性代数
行列式不变性的推导我们要证明:给矩阵的一行(或列)加上另一行(或列)的倍数,这种操作不会改变行列式的值。问题描述假设我们有一个矩阵AAA,其大小为3×33\times33×3,如果我们将其第1行加上第2行的倍数,得到新的矩阵A′A'A′。我们需要证明矩阵AAA的行列式和矩阵A′A'A′的行列式是相等的。给定矩阵AAA如下:A=(a11a12a13a21a22a23a31a32a33)A=\begi
- 乘法-逆矩阵
取个名字真难呐
线性代数矩阵算法线性代数
文章目录1.矩阵相乘-5种方式1.1C=AB1.2AX列组合1.3XB行组合1.4列行组合1.5块求和2.高斯消元法求A−1A^{-1}A−12.1求A−1A^{-1}A−12.2推理1.矩阵相乘-5种方式1.1C=AB假设我们要求得矩阵C=AB,可以用如下公式表示cij=∑k=1Naikbkj(1)c_{ij}=\sum_{k=1}^Na_{ik}b_{kj}\tag{1}cij=k=1∑Nai
- 第2章 线性代数
His Last Bow
#深度学习线性代数机器学习深度学习人工智能算法
目录1.标量、向量、矩阵和张量2.矩阵和向量相乘3.单位矩阵和逆矩阵4.线性相关和生成子空间5.范数6.特殊类型的矩阵和向量7.特征分解8.奇异值分解9.Moore-Penrose伪逆10.迹运算11.行列式1.标量、向量、矩阵和张量标量(scalar):数向量(vector):一列数x=[x1x2...xn]x=\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_n\end{
- 向量的内积、外积、混合积、行列式,以及它们的几何意义 (还有 数量积、点乘、向量积、叉乘)
shimly123456
数学复习线性代数
参考视频1(数量积向量积混合积内积外积):https://www.bilibili.com/video/BV1kL4y1e78T/?vd_source=7a1a0bc74158c6993c7355c5490fc600参考视频2(线性代数:内积、外积、行列式、特征值):https://www.bilibili.com/video/BV16J411J7yF/?vd_source=7a1a0bc7415
- 齐次方程是否有非零解,和它的系数矩阵行列式的关系
shimly123456
数学复习矩阵线性代数
视频来源:https://www.bilibili.com/video/BV1vY4y1J7gd/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc6004:22有这么一句话,如下图对于齐次方程,若系数矩阵的行列式为零,则方程有非零解在求解矩阵的特征向量时,行列式的这个性质可以用来判断
- 摆(行列式、杜教筛)
dygxczn
线性代数
有一个n×nn\timesnn×n的矩阵AAA,满足:Ai,j={1i=j0i≠j∧i∣jCotherwiseA_{i,j}=\begin{cases}1&i=j\\0&i\not=j\landi\midj\\C&\text{otherwise}\end{cases}Ai,j=⎩⎨⎧10Ci=ji=j∧i∣jotherwise求det(A)\det(A)det(A)。答案模998244353
- Cayley-Hamilton定理(凯莱-哈密顿定理)
啵啵啵啵哲
数学笔记线性代数
1.定义(1)符号定义单位矩阵为III,矩阵AAA的行列式记作det(A)\det\left(A\right)det(A),伴随矩阵记作adj(A)\mathrm{adj}\left(A\right)adj(A).(2)特征多项式矩阵AAA的特征多项式定义为:χA(s)≜det(sI−A)=sn+d1sn−1+⋯+dn,\chi_A\left(s\right)\triangleq\det\le
- 线代:认识行列式、矩阵和向量
路溪非溪
矩阵机器学习线性代数
本文主要参考的视频教程如下:8小时学完线代【中国大学MOOC*小元老师】线性代数速学_哔哩哔哩_bilibili另外这个视频可以作为补充:【考研数学线性代数基础课】—全集_哔哩哔哩_bilibili行列式的概念和定义一般会由方程组来引出行列式比如一个二阶行列式二阶行列式的计算就是主对角线的乘积减去副对角线的乘积;再看看三阶行列式举个例子帮助理解行列式越往高阶越复杂。二阶和三阶的尚且可以通过上面的方
- 线性代数第9版英文pdf_线性代数(英文版·第9版)
weixin_39726044
线性代数第9版英文pdf
《线性代数(英文版·第9版)》结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了MATLAB练习题和测试题。StevenJ.Leon1971年于密歇根州立大学数学系获得博士学位,现为马萨诸塞大学达特茅斯分校数学系首席教授,
- armadillo matlab,Armadillo之计算矩阵的行列式(determinant)
三七二十
armadillomatlab
计算矩阵的行列式很简单,用det方法或是log_det方法1det(A)如果A不是方阵的(square),将抛出std::logic_error异常例:matm="3,2,4;1,-2,3;2,3,2;";doubled=det(m);cout<运行结果是-32log_det(value,sign,A)文档里推荐当矩阵A比较大时,使用本函数来代替det函数(估计会加快计算速度)det(A)=exp
- 矩阵迹(trace), 行列式(determinate)(转载)
TanJXzzZ
线性代数矩阵机器学习
1.迹(trace)矩阵的迹(trace)表示矩阵AAA主对角线所有元素的和迹的来源最根本的应该就是迹和特征值的和相等。因为特征值如此重要,所以才定义了迹。离开了这一点,我觉得迹也就失去了立足点。迹与特征值一直在用迹等于特征值的和来求特征值,但从来没有想过二者究竟是怎么联系起来的。没事儿就重新推了一遍。一元二次方程的根与系数的关系先看一元二次方程。推广至一元n次方程特征值分开来写就是:其实质也是一
- 矩阵迹(trace), 行列式(determinate)
Anne033
BasicMath
1.迹(trace)矩阵的迹(trace)表示矩阵AAA主对角线所有元素的和迹的来源最根本的应该就是迹和特征值的和相等。因为特征值如此重要,所以才定义了迹。离开了这一点,我觉得迹也就失去了立足点。迹与特征值一直在用迹等于特征值的和来求特征值,但从来没有想过二者究竟是怎么联系起来的。没事儿就重新推了一遍。一元二次方程的根与系数的关系先看一元二次方程。推广至一元n次方程特征值分开来写就是:其实质也是一
- 通过C#实现矩阵求逆-简单版
傲娇邂逅双马尾.
矩阵线性代数c#
网上大部分C#实现矩阵求逆都比较复杂,现在在这里分享一种很好理解的矩阵求逆方法,而且可以适用于任何形式的可逆矩阵求逆,但是肯定运行效率不如其它的算法,正所谓鱼和熊掌不可兼得。我们采用的是通过单位矩阵变换的这种方法来实现的,话不多说,下面解释实现原理。将需要变化的矩阵与单位矩阵拼在一起形成增广矩阵。A为需要求逆的矩阵,E为单位矩阵。如图然后我们经过初等行列式变换,将增广矩阵左半部分变为单位矩阵,那么
- C#,数值计算,矩阵的行列式(Determinant)、伴随矩阵(Adjoint)与逆矩阵(Inverse)的算法与源代码
深度混淆
C#算法演义AlgorithmRecipesC#数值计算NumericalRecipes线性代数矩阵行列式伴随矩阵矩阵求逆
本文发布矩阵(Matrix)的一些初级算法。一、矩阵的行列式(Determinant)矩阵行列式是指矩阵的全部元素构成的行列式,设A=(a)是数域P上的一个n阶矩阵,则所有A=(a)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=kⁿ|A|,|A*|=|A|,其中A*是A的伴随矩阵;若A是可
- λ-矩阵(不变因子)
橘子蜂蜜
高等代数
λ-矩阵的标准形是唯一的.定义5设λ-矩阵的秩为r,对于正整数中必有非零的k级子式,中全部k级子式的首项系数为1的最大公因式称为的k级行列式因子。对于秩为r的λ-矩阵,行列式因子一共有r个,行列式因子的意义在于初等变换下是不变的。定理3:等价的λ-矩阵具有相同的秩与相同的各级行列式因子。现在来计算标准形矩阵的行列式因子,设标准形为
- 实验七matlab数值计算,数学应用软件实验报告---MATLAB的数值计算
雪鱼子
实验七matlab数值计算
一,实验目的1.掌握MATLAB矩阵分析的命令和方法;2.掌握MATLAB多项式运算的命令和访求;3.掌握MATLAB数值微积分的运算方法。二,实验原理1.矩阵分析矩阵转置:单引号(’)矩阵的旋转:rot90(A,k),功能是将矩阵A旋转90度的k倍,缺省值是1矩阵的左右翻转:fliplr(A)矩阵的上下翻转:flipud(A)矩阵的逆:inv(A),与A^(-1)等价矩阵的行列式:det(A)矩
- 课程大纲:图像处理中的矩阵计算
superdont
计算机视觉图像处理矩阵人工智能
课程名称:《图像处理中的矩阵计算》课程简介:图像处理中的矩阵计算是图像分析与处理的核心部分。本课程旨在教授学员如何应用线性代数中的矩阵计算,以实现各种图像处理技术。我们将通过强调实际应用和实践活动来确保学员能够理解和掌握这些概念。课程大纲:第1章:矩阵计算基础矩阵及其表示方式矩阵四则运算单位矩阵和逆矩阵矩阵的转置线性系统和矩阵的求解(高斯消元法)第2章:图像表示和颜色空间数字图像的矩阵表示灰度图像
- [数学]高斯消元
Waldeinsamkeit41
算法数据结构
介绍用处:求解线性方程组加减消元法和代入消元法这里引用了高斯消元解线性方程组----C++实现_c++用高斯消元法解线性方程组-CSDN博客改成了自己常用的形式:intgauss(){intc,r;//column,rowfor(c=1,r=1;cfabs(a[maxx][c]))maxx=i;if(fabs(a[maxx][c])=c;i--)a[r][i]/=a[r][c];//把现在的第r行
- NumPy 线性代数
weixin_30249203
python
NumPy线性代数NumPy提供了线性代数函数库linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明:函数描述dot两个数组的点积,即元素对应相乘。vdot两个向量的点积inner两个数组的内积matmul两个数组的矩阵积determinant数组的行列式solve求解线性矩阵方程inv计算矩阵的乘法逆矩阵numpy.dot()numpy.dot()对于两个一维的数组,计算的是这两个
- 行列式求值(C++)
龙行泽雨
计算方法c++线性代数
对于行列式的求值主要有三种方法:①对角线相乘②行列式展开③代数余子式计算。对角线相乘对角线相乘需要行列式满足特定的要求,如上三角、下三角或者对角阵,否则不能直接使用此方法。如果需要使用这个方法,则需要对行列式进行初等行变换,直到满足要求。初等行变换性质:交换任意两行,行列式的值变为相反数。把某一行乘以一个非零数加到另外一行行列式的值不变。行列式转置后,行列式的值不变,因此上述性质同样适用于列变换的
- 行列式
想做你的太阳
1.行列式的定义2.行列式的性质3.各种行列式类型的计算4.行列式展开5.克拉默法则齐次方程:行列式不为零非齐次方程:
- C语言判断输入的字符串中括号是否成对匹配
水智
练习题c语言开发语言学习青少年编程算法
文章目录1-15题题目16题目16参考答案1题目16参考答案21-15题C语言基础例题1-3题-指针篇C语言基础例题4-5题-二维数组篇C语言基础例题6-7题-结构体篇C语言基础例题8-9题-大作业篇C语言基础例题10-11题-计算数字个数C语言基础例题12题-链表C语言基础例题13题-字符串逆序C语言基础例题14-15题-三阶行列式题目16编写一个C程序,实现括号匹配检查的功能。给定一个只包含圆
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_