- [ABC304F] Shift Table(莫比乌斯反演)
yusen_123
数论算法图论c++
题目:https://www.luogu.com.cn/problem/AT_abc304_f思路:容斥原理,莫比乌斯反演应该都可以,我用的是莫比乌斯反演。注意:最好用longlong类型;代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include
- Lcms(莫比乌斯反演)
yusen_123
数论c++算法
题目路径:https://www.luogu.com.cn/problem/AT_agc038_c思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;c
- Array Equalizer(莫比乌斯反演)
yusen_123
数论算法c++
1605E-ArrayEqualizer思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;constintN=2e5+100;#defineLLlon
- 狄利克雷卷积及常见函数与莫比乌斯反演
溶解不讲嘿
数论线性代数笔记
QwQ文章目前没有题目,只有理论知识狄利克雷卷积狄利克雷卷积(DirichletConvolution)在解析数论中是一个非常重要的工具.使用狄利克雷卷积可以很方便地推出一些重要函数和公式,它在信息学竞赛和解析数论中至关重要.狄利克雷卷积是定义在数论函数间的二元运算.数论函数,是指定义域为N\mathbb{N}N(自然数),值域为C\mathbb{C}C(复数)的一类函数,每个数论函数可以视为复数
- 莫比乌斯反演(acwing2702)
yusen_123
数论算法
对于给出的n�个询问,每次求有多少个数对(x,y)(�,�),满足a≤x≤b,c≤y≤d�≤�≤�,�≤�≤�,且gcd(x,y)=kgcd(�,�)=�,gcd(x,y)gcd(�,�)函数为x�和y�的最大公约数。输入格式第一行一个整数n�。接下来n�行每行五个整数,分别表示a、b、c、d、k�、�、�、�、�。输出格式共n�行,每行一个整数表示满足要求的数对(x,y)(�,�)的个数。数据范
- 洛谷p1829(莫比乌斯反演)
yusen_123
数论c++算法数据结构
思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#includeusingnamespacestd;constdoubleeps=1e-8;constintN=1e7+10;constlonglongmod=20101009;#defineLLlonglongintpre[N],st[N];intn,cn,m;LLmu[N];
- P3704数字表格(莫比乌斯反演)
yusen_123
数论算法
题目背景Doris刚刚学习了fibonacci数列。用fi表示数列的第i项,那么0=0,1=1f0=0,f1=1fn=fn−1+fn−2,n≥2题目描述Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是gcd(i,j),其中gcd(i,j)表示i,j的最大公约数。Doris的表格中共有n×m个数,她想知道这些数的乘积是多少。答案对109+7取模。输入格式本题单个测试点内
- BZOJ 2440 完全平方数 (容斥+莫比乌斯反演+二分)
_TCgogogo_
数论二分/三分/两点法组合数学BZOJ莫比乌斯反演容斥二分
2440:[中山市选2011]完全平方数TimeLimit:10SecMemoryLimit:128MBSubmit:1673Solved:799[Submit][Status][Discuss]Description小X自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而这丝毫不影响他对其他数的热爱。这天是小X的生日,
- 《算法竞赛进阶指南》------数论习题篇1
axtices
数论算法数论
文章目录练习9:XORBZOJ2115(*线性基。求图中异或和,可谓经典中的经典)练习10:新Nim游戏BZOJ3105(*NIM进阶版NIM博弈+线性基)练习11:排列计数BZOJ4517(*错位排序)练习12:SkyCode(*容斥原理$莫比乌斯反演经典)练习16魔法珠CH3B16(SG博弈)练习17:GeorgiaandBob(*NIM博弈三定理)**错误思路**:**NIM博弈三定理**:
- YYHS-NOIP模拟赛-gcd
weixin_33845477
题解这道题题解里说用莫比乌斯反演做(我这个蒟蒻怎么会做呢)但是不会,所以我们另想方法,这里我们用容斥来做我们先把500000以内的所有质数筛出来每次读入编号的时候,先把编号对应的这个数分解质因数然后我们dfs枚举这个数的质因子取或不取,我们用t来表示取的质因子个数,如果t为奇数,ans就加,反之就减(容斥原理)1#include2#defineN2000053#defineM5000054#def
- 2019.6.summary
LMB_001
刷题总结刷题总结
2019.6.1BZOJ3028:食物生成函数题,母函数乘起来就好了BZOJ3544:[ONTAK2010]CreativeAccounting嗯,就是可以用set维护前缀和,取后继或最小数贪心就好啦BZOJ2820:YY的GCD莫比乌斯反演BZOJ4173:数学https://blog.csdn.net/zhhx2001/article/details/52300924由这个blog里的证明我们
- 莫比乌斯函数
林苏泽
数论
目录前导积性函数莫比乌斯函数莫比乌斯反演莫比乌斯反演定理莫比乌斯反演定理证明莫比乌斯反演另一性质(与欧拉函数有关)前导要学习莫比乌斯函数需要学习到积性函数,深度理解欧拉筛。先说说什么是积性函数吧。积性函数其实积性函数非常好理解,定义积性函数:若gcd(a,b)=1,且满足f(ab)=f(a)f(b),则称f(x)为积性函数完全积性函数:对于任意正整数a,b,都满足f(ab)=f(a)f(b),则称
- 积性函数及其初级应用
SMT0x400
学习算法数学
积性函数及其初级应用垃圾博客,我本地LaTeX挂了,艹大量内容和入门方式都参考了莫比乌斯反演与数论函数。感谢CMD大爷!0xFF前置知识1.质数及其判定,质因数及其分解小学课本里面讲过质数的定义了,不细讲。分解质因数也是基本功。2.筛法同学们想必都会埃氏筛法吧,即对于每一个质数枚举其倍数筛除整个值域内的所有数。如果你学得更远一点,那么你会使用欧拉筛法。它的算法思想这里不再赘述。后面的一切练习题都是
- 数论知识点总结(一)
Mark 85
数学数论算法数据结构
文章目录目录文章目录前言一、数论有哪些二、题法混讲1.素数判断,质数,筛法2.最大公约数和最小公倍数3.快速幂4.约数前言现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣!一、数论有哪些数论原根,素数判断,质数,筛法最大公约数,gcd扩展欧几里德算法,快速幂,exgcd,不定方程,进制,中国剩余定理,CRT,莫比乌斯反演,逆元,Lucas定理,类欧几里得算法,调和级数
- HAOI2011 Problem b
SHOJYS
算法c++
Problemblink做法:莫比乌斯反演。思路:对于给出的nnn个询问,每次求有多少个数对(x,y)(x,y)(x,y),满足a≤x≤ba\lex\leba≤x≤b,c≤y≤dc\ley\ledc≤y≤d,且gcd(x,y)=k\gcd(x,y)=kgcd(x,y)=k,gcd(x,y)\gcd(x,y)gcd(x,y)函数为xxx和yyy的最大公约数。我们设f(n)=∑i=1x∑j=1y
- HDU 6715算术 莫比乌斯反演
9fe5164d41b8
@[toc]题意,求。链接:hdu6715思路方法一:打表得出:进一步按套路优化,提出,令得:首先这个东西是,是一个积性函数,所以可以筛出来。这个东西可以按分别预处理出来,预处理的复杂度和埃式筛一样是,空间复杂度也是。最后上面这个式子就可以求和了。HDU数据证明,不预处理第二点更快。。。方法二:已知又因为:因此:因为当不为时:而当为时,自然也是,所以也不会影响下面这个式子:接下来的步骤和方法一就相
- 莫比乌斯反演
Evan_song1234
数学算法与数据结构算法
莫比乌斯反演主要用于快速计算一些阴间式子(包含gcd(i,j)\gcd(i,j)gcd(i,j)等)。至于如何应用,往下看。莫比乌斯函数μ(x)={1x=10n含有平方因子(−1)kk为n本质不同质因子个数\mu(x)=\begin{cases}1&x=1\\0&n含有平方因子\\(-1)^k&k为n本质不同质因子个数\end{cases}μ(x)=⎩⎨⎧10(−1)kx=1n含有平方因子k为n
- 莫比乌斯反演
WangLi&a
莫比乌斯反演狄利克雷卷积杜教筛数论分块数论
莫比乌斯反演定义莫比乌斯反演公式:[n=1]=∑d∣nμ(d)[n=1]=\underset{d|n}\sum\mu(d)[n=1]=d∣n∑μ(d)其他几种莫比乌斯反演的形式:标准形式:f(n)=∑d∣ng(d)⇔g(n)=∑d∣nμ(d)f(nd)f(n)=\underset{d|n}\sumg(d)\Leftrightarrowg(n)=\underset{d|n}\sum\mu(d)f(\
- 【Codeforces】 CF1436F Sum Over Subsets
Farmer_D
Codeforces算法
题目链接CF方向Luogu方向题目解法首先考虑消去gcdgcdgcd的限制考虑莫比乌斯反演优先枚举ddd可得答案为∑d=1nμ(d)∗ans(d)\sum_{d=1}^{n}\mu(d)*ans(d)∑d=1nμ(d)∗ans(d)其中ans(d)ans(d)ans(d)是所有aia_iai是ddd的倍数组成的答案令aia_iai为ddd的倍数的所有数的可重集为SSS考虑∑x∈Ax∗∑y∈By=∑
- 数论分块学习笔记
Dawn-_-cx
数论学习笔记算法数论c++数论分块杜教筛
准备开始复习莫比乌斯反演,杜教筛这一部分,先复习一下数论分块0.随便说说数论分块可以计算如下形式的式子∑i=1nf(i)g(⌊ni⌋)\sum_{i=1}^{n}f(i)g(\lfloor\frac{n}{i}\rfloor)∑i=1nf(i)g(⌊in⌋)。利用的原理是⌊ni⌋\lfloor\frac{n}{i}\rfloor⌊in⌋的不同的值不超过2n2\sqrt{n}2n个。当我们可以在O(
- C/C++数论/数学算法总结(关于数学知识以及一些比较重要的算法)
Xq_23
大数算法编程语言
总结C/C++关于数学知识以及一些比较重要的算法1.数论整数型问题:整除、最大公约数、最小公倍数、欧几里得算法、扩展欧几里得算法.素数问题:素数判断、区间素数统计.同余问题:模运算、同于方程、快速幂、中国剩余定理、逆元、整数分解、同余定理.不定方程.乘性函数:欧拉函数、伪随机数、莫比乌斯反演.2.组合数学排列组合:技术原理、特殊排列、排列生成、组合生成.母函数:普通型、指数型.递推关系:斐波那契数
- 「SDOI2008」仪仗队
L('ω')┘脏脏包└('ω')」
题解题解
目录1.介绍2.分析3.代码1.有注释版2.copy专用1.介绍(同上,教练把lg禁了,暂时给不了网址+还我LG!!!)怎么说呢,弱化forest(forest网址下次补上)就这一个弱化,就从莫比乌斯反演欧拉函数2.分析看一看图片其实我们可以沿着对角线就是一下把它变成、与(截屏截的好丑呀qwq)实际上,我们只需要求的总数给它乘二加三(因为有(1,0),(1,1),(0,1))即可问题又来了:怎么求
- 算法学习笔记(24): 狄利克雷卷积和莫比乌斯反演
jeefy
#狄利克雷卷积和莫比乌斯反演>看了《组合数学》,再听了学长讲的……感觉三官被颠覆……[TOC]##狄利克雷卷积如此定义:$$(f*g)(n)=\sum_{xy=n}f(x)g(y)$$或者可以写为$$(f*g)(n)=\sum_{d|n}f(d)g
- [HAOI2011]Problem b(莫比乌斯反演)
何况虚度光阴
数论c++算法
[HAOI2011]Problemb题目链接:https://www.luogu.com.cn/problem/P2522题目描述对于给出的nnn个询问,每次求有多少个数对(x,y)(x,y)(x,y),满足a≤x≤ba\lex\leba≤x≤b,c≤y≤dc\ley\ledc≤y≤d,且gcd(x,y)=k\gcd(x,y)=kgcd(x,y)=k,gcd(x,y)\gcd(x,y)gcd(
- P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
何况虚度光阴
数论c++图论算法
[国家集训队]Crash的数字表格/JZPTAB题目描述今天的数学课上,Crash小朋友学习了最小公倍数(LeastCommonMultiple)。对于两个正整数aaa和bbb,lcm(a,b)\text{lcm}(a,b)lcm(a,b)表示能同时整除aaa和bbb的最小正整数。例如,lcm(6,8)=24\text{lcm}(6,8)=24lcm(6,8)=24。回到家后,Crash还在想着课
- 莫比乌斯反演-奇妙的欧拉
An_Account
让我们从一道题开始求\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j),(n首先对gcd(i,j)分类,有\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)=\sum_{k=1}^{n}k\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=k]同时除以k=\sum_{k=1}^{n}k\sum_{i=1}^{\lfloor\fra
- 数学/数论专题:莫比乌斯函数与欧拉函数
Plozia
学习笔记+专项训练数学/数论算法
数学/数论专题:莫比乌斯函数与欧拉函数(进阶)0.前言1.前置知识2.正文3.总结4.参考资料0.前言本篇文章会从狄利克雷卷积的角度,讨论莫比乌斯函数与欧拉函数的相关性质。或者说就是利用狄利克雷卷积重新证一遍这两个函数的性质以及弄出几个新的式子。其实我觉得这块还是挺妙的,也可能是我做DP和数据结构做疯了(1.前置知识首先您需要知道欧拉函数,狄利克雷卷积,莫比乌斯函数+莫比乌斯反演。如果不知道,可以
- 【笔记】莫比乌斯反演-从入门到入土
inferior_hjx
笔记算法c++
上一篇:莫比乌斯反演(前置知识)文章目录莫比乌斯反演关于反演莫比乌斯函数定义性质莫比乌斯反演公式公式1公式2整除分块引入关于整除分块基础推导简单扩展莫比乌斯反演的应用例1:证明下式成立例2:YY的GCD例3:Problemb例4:完全平方数例5:约数个数和总结莫比乌斯反演正片开始关于反演顾名思义,反演就是反向演变,举个栗子,若有F(n)=k⋅f(n)F(n)=k\cdotf(n)F(n)=k⋅f(
- 【笔记】莫比乌斯反演(前置知识)
inferior_hjx
笔记c++算法
文章目录前言前置知识模定义性质整除定义性质同余定义性质逆元定义性质积性函数定义常见的积性函数证明欧拉函数为积性函数例1:欧拉函数线性筛例2:莫比乌斯函数线性筛前言由于文章正文太长,不得不分几篇博客。本篇为数论基础内容,学习过数论的可以跳过。最近学了莫比乌斯反演和一点狄利克雷卷积,感觉很难,也是看了很多博客才有点明,写一篇博客帮助自己理解。由于数论大多基于正整数讨论,故除特殊说明外,本文所有变量都为
- 莫比乌斯反演经典例题(1)
__LazyCat__
莫比乌斯反演算法c++
链接:P2257YY的GCD-洛谷|计算机科学教育新生态(luogu.com.cn)题意:给定n,m,求∑i=1n∑j=1m[gcd(i,j)==prime]\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==prime]∑i=1n∑j=1m[gcd(i,j)==prime]。题解:首先枚举质数可化为∑d∈primemin(n,m)∑i=1n/d∑j=1m/d[gcd(i
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(