Kinect与PCL搭配实现RGBD点云的实时显示

刚刚学会了将彩色图像与深度图像的对齐方法。利用Kinect SDK里面的映射函数,可以将深度图的像素和彩色图对应,同时将深度图映射到相机空间上。在利用PCL将深度图像的的每一个像素和与其对应的颜色存到点云中,再进行显示。

代码如下:

 

#include 
#include 
#include  
#include 
#include 
#include 

using namespace cv;
using namespace std;


IKinectSensor* pSensor;
ICoordinateMapper *pMapper;
const int iDWidth = 512, iDHeight = 424;//深度图尺寸
const int iCWidth = 1920, iCHeight = 1080;//彩色图尺寸
CameraSpacePoint depth2xyz[iDWidth*iDHeight];
ColorSpacePoint depth2rgb[iCWidth*iCHeight];


void viewerOneOff(pcl::visualization::PCLVisualizer& viewer)
{
	viewer.setBackgroundColor(1.0, 1.0, 1.0);//设置背景颜色 
}


//启动Kinect
bool initKinect()
{
	if (FAILED(GetDefaultKinectSensor(&pSensor))) return false;
	if (pSensor)
	{
		pSensor->get_CoordinateMapper(&pMapper);
		pSensor->Open();
		cout << "已打开相机" << endl;
		return true;
	}
	else return false;
}
//获取深度帧
Mat DepthData()
{
	IDepthFrameSource* pFrameSource = nullptr;
	pSensor->get_DepthFrameSource(&pFrameSource);
	IDepthFrameReader* pFrameReader = nullptr;
	pFrameSource->OpenReader(&pFrameReader);
	IDepthFrame* pFrame = nullptr;
	Mat mDepthImg(iDHeight, iDWidth, CV_16UC1);
	while (true)
	{
		if (pFrameReader->AcquireLatestFrame(&pFrame) == S_OK)
		{

			pFrame->CopyFrameDataToArray(iDWidth * iDHeight, reinterpret_cast(mDepthImg.data));
			cout << "已获取深度帧" << endl;
			pFrame->Release();
			return mDepthImg;
			break;
		}
	}
}
//获取彩色帧
Mat RGBData()
{
	IColorFrameSource* pFrameSource = nullptr;
	pSensor->get_ColorFrameSource(&pFrameSource);
	IColorFrameReader* pFrameReader = nullptr;
	pFrameSource->OpenReader(&pFrameReader);
	IColorFrame* pFrame = nullptr;
	Mat mColorImg(iCHeight, iCWidth, CV_8UC4);
	while (true)
	{
		if (pFrameReader->AcquireLatestFrame(&pFrame) == S_OK)
		{

			pFrame->CopyConvertedFrameDataToArray(iCWidth * iCHeight * 4, mColorImg.data, ColorImageFormat_Bgra);
			cout << "已获取彩色帧" << endl;
			pFrame->Release();
			return mColorImg;
			break;
		}
	}
}


int main()
{
	initKinect();
	pcl::visualization::CloudViewer viewer("Cloud Viewer");
	viewer.runOnVisualizationThreadOnce(viewerOneOff);
	pcl::PointCloud::Ptr cloud(new pcl::PointCloud);
	Mat mColorImg;
	Mat mDepthImg;
	while (cv::waitKey(30) != VK_ESCAPE)
	{
		mColorImg = RGBData();
		mDepthImg = DepthData();
		imshow("RGB", mColorImg);
		pMapper->MapDepthFrameToColorSpace(iDHeight*iDWidth, reinterpret_cast(mDepthImg.data), iDHeight*iDWidth, depth2rgb);//深度图到颜色的映射
		pMapper->MapDepthFrameToCameraSpace(iDHeight*iDWidth, reinterpret_cast(mDepthImg.data), iDHeight*iDWidth, depth2xyz);//深度图到相机三维空间的映射
		//for (int i = 0; i < iDWidth*iDHeight; i++)
		//{
		//	cout << i << ":  " << "X=" << depth2rgb[i].X << ";  Y=" << depth2rgb[i].Y< 0.5&&depth2rgb[i + j*iDWidth].X<1920 && depth2rgb[i + j*iDWidth].X>0 && depth2rgb[i + j*iDWidth].Y<1080 && depth2rgb[i + j*iDWidth].Y>0)
				{
					pointTemp.x = -depth2xyz[i + j*iDWidth].X;
					if (depth2xyz[i + j*iDWidth].X > maxX) maxX = -depth2xyz[i + j*iDWidth].X;
					if (depth2xyz[i + j*iDWidth].X < minX) minX = -depth2xyz[i + j*iDWidth].X;
					pointTemp.y = depth2xyz[i + j*iDWidth].Y;
					if (depth2xyz[i + j*iDWidth].Y > maxY) maxY = depth2xyz[i + j*iDWidth].Y;
					if (depth2xyz[i + j*iDWidth].Y < minY) minY = depth2xyz[i + j*iDWidth].Y;
					pointTemp.z = depth2xyz[i + j*iDWidth].Z;
					if (depth2xyz[i + j*iDWidth].Z != 0.0)
					{
						if (depth2xyz[i + j*iDWidth].Z > maxZ) maxZ = depth2xyz[i + j*iDWidth].Z;
						if (depth2xyz[i + j*iDWidth].Z < minZ) minZ = depth2xyz[i + j*iDWidth].Z;
					}
					pointTemp.b = mColorImg.at(depth2rgb[i + j*iDWidth].Y, depth2rgb[i + j*iDWidth].X)[0];
					pointTemp.g = mColorImg.at(depth2rgb[i + j*iDWidth].Y, depth2rgb[i + j*iDWidth].X)[1];
					pointTemp.r = mColorImg.at(depth2rgb[i + j*iDWidth].Y, depth2rgb[i + j*iDWidth].X)[2];
					pointTemp.a = mColorImg.at(depth2rgb[i + j*iDWidth].Y, depth2rgb[i + j*iDWidth].X)[3];
					cloud->push_back(pointTemp);
				}

			}

		}

		viewer.showCloud(cloud);
		mColorImg.release();
		mDepthImg.release();
		cloud->clear();
		waitKey(10);

	}
	
	return 0;
}


希望能对大家有帮助!

 

 

你可能感兴趣的:(RGBD)