- 数论基础知识(整除,质数,合数,质因数,取模,同余)
acmakb
蓝桥杯c++数论算法
整除整除的定义:设a,b∈Z,a≠0。如果q∈Z,使得b=aq,那么就说b可被a整除,记作a|b。若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),即b∣a,读作"b整除a”或“a能被b整除”,注意这两句话的前后主语。举例:15/5=0说明15可以被5整除,记作5|15常用性质:如果a整除b,并且b整除c,那么a整除c若a|b,b|c则>a|c20/5=44/2
- C语言-算法-数论基础
SpongeG
C语言-算法算法c语言开发语言
【模板】快速幂题目描述给你三个整数a,b,pa,b,pa,b,p,求ab mod pa^b\bmodpabmodp。输入格式输入只有一行三个整数,分别代表a,b,pa,b,pa,b,p。输出格式输出一行一个字符串a^bmodp=s,其中a,b,pa,b,pa,b,p分别为题目给定的值,sss为运算结果。样例#1样例输入#12109样例输出#12^10mod9=7提示样例解释210=10242^{1
- 【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】
不是AI
C语言密码学算法web安全密码学c语言
实验三、数论基础(下)一、实验内容1、中国剩余定理(ChineseRemainderTheorem)(1)、算法原理m1,m2,…mk是一组两两互素的正整数,且M=m1·m2·…·mk为它们的乘积,则如下的同余方程组:x==a1(modm1)x==a2(modm2)…x==ak(modmk)对于模M有唯一的解x=(M·e1·a1/m1+M·e2·a2/m2+…+M·ek·ak/mk)(modM)其
- 【网络安全】【密码学】【北京航空航天大学】实验二、数论基础(中)【C语言和Java实现】
不是AI
C语言Java密码学密码学c语言java
实验二、数论基础(中)一、实验内容1、扩展欧几里得算法(ExtendedEuclid’sAlgorithm)(1)、算法原理已知整数a,b,扩展的欧几里得算法可以在求得a,b的最大公约数的同时,找到一对整数x,y,使得a,b,x,y满足如下等式:ax+by=d=gcd(a,b),其中gcd(a,b)为a和b的最大公约数。(2)、算法流程本算法的大致流程如下图所示:(3)算法的代码实现(C语言)#i
- 【网络安全】【密码学】【北京航空航天大学】实验一、数论基础(上)【C语言和Java实现】
不是AI
C语言密码学Javaweb安全密码学c语言
实验一、数论基础(上)一、实验目的1、通过本次实验,熟悉相关的编程环境,为后续的实验做好铺垫;2、回顾数论学科中的重要基本算法,并加深对其的理解,为本学期密码学理论及实验课程打下良好的基础。二、实验原理数论主要研究的是整数的运算及性质,许多常用的加密算法都用到了数论知识。三、实验环境本次实验的实验环境为Dev-C++5.11,以及IntelliJIDEAIDE。四、实验内容1、厄拉多塞筛算法(Si
- 洛谷普及组P1044栈,题目讲解(无数论基础,纯打表找规律)
Colinnian
深度优先算法题目讲解
[NOIP2003普及组]栈-洛谷我先写了个打表的代码,写了一个小时,o(╥﹏╥)o只能说我真不擅长dfs。intn;std::unordered_mapmap;voiddfs(std::vector&a,intstep,std::stackp,std::strings){if(step==n+1){while(!p.empty()){s.push_back('0'+p.top());p.pop(
- 初等数论基础
satadriver
数学算法抽象代数
欧拉函数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉函数\phi(x),其中x是正整数,函数的值是从0到x-1之间与x互为质数的个数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉定理aϕ(m)=1(modm),其中m和a是大于1的正整数a^{\phi(m)}=1(mod\quadm),其中m和a是大于1的正整数aϕ(m)=1
- 【考研—密码学数论基础】环、群、域、多项式运算
GoesM
考研--密码学与网络安全c++数论考研密码学抽象代数
注:下述笔记根据学习通公开课程《数学的思维方式与创新》,部分内容并非严谨数学定义,个人理解居多。注2:第一遍学的时候理解得太片面了,面试被问到了才意识到理解得有问题,特此重新更正Pre:理解一些问题群?环?域?这些概念是在聊什么?它们都相当于是一种特殊的集合。抽象代数中的加法?乘法?本质是:定义新运算。它其实不同于我们平时知道的乘法和加法,但在逻辑上有一些相似之处。单位元:在集合中作乘法运算,类似
- 数论基础之模运算
wxhyaoshunyutang
抽象代数
数论基础之模运算这篇罗列一下模运算的定义,即最基本的运算定理首先回顾一下整除的性质a是b的倍数=b整除a=b|a定理:对任意整数a和b,b≠0b\neq0b=0,唯一存在一对整数q和r,使得0≤\leq≤r≤\leq≤|b|,a=qb+r整数的基本性质性质1.若a|b,b|c,则a|c性质2.若a|b,则a|bc性质3.若a|b,a|c,则a|b+c性质4.若a整除b1,b2…bn,则a|Λ1\
- 数论基础模板-----数论成长之路
gzr2018
算法竞赛
最大公约数gcdgcd(f[n],f[m])=f[gcd(n,m)]intgcd(inta,intb)//a大于b{returna%b==0?b:gcd(b,a%b);}ViewCode最小公倍数LcmintLcm(inta,intb){returna/gcd(a,b)*b;}ViewCodeint输入输出挂inlineintread(){intx=0,f=1;charc=getchar();wh
- 约数——数论算法
miracle1114
数论算法c++
数论基础知识本篇文章主要讲述数论中基础算法约数部分的内容提示:本篇文章代码参考ACWing文章目录数论基础知识一、约数是什么?二、约数的相关算法1.枚举出某一个数的所有约数2.求约数的个数3.最大公约数4.约数之和!!:以下是本篇文章正文内容,下面案例可供参考一、约数是什么?约数,又叫因数。整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,
- rsa加密算法_CTF现代密码之RSA之数论
weixin_39817176
rsa加密算法rsa加密算法实现rsa算法pythonrsa算法代码凯撒密码加密算法python
亲爱的,关注我吧10/30文章共计2345个词预计阅读8分钟如果有伙伴发现这篇文章小编之前发过不要惊讶哦是对文章做了一些更正呀来和我一起阅读吧前言:在CTF的密码题目中,RSA以其加密算法之多且应用之广泛,所以在比赛中是最常见的题目。学习密码学并不难,但首先得打好数学基础,并在攻破密码的学习之路上持之以恒。今天我们就来打开RSA加密世界的第一扇门《数论》。数论基础:1.素数2.公约数与公倍数3.欧
- 数论基础(III):新兴学科及前沿数学。
luj_1768
算法经验分享数据库c语言开发语言
近现代的数论研究,一般是与高能物理、天体物理、生物医药、材料工程、计算工程,相互影响、相互促进、同步进化的。其理论基础大多根植于香浓底论、七桥问题。高数、高代、线数,的学科建设与学科融合是当前数学研修的又一主流方向。这与社会对计算方法、解算方案的需求有关。计算工具的发展,为群论、集合概率论、统计分布理论、的应用和发展,提供了条件、带来了机遇。信息论、人工智能、元宇宙,则是当前学科发展的综合学科和前
- 算法比赛备赛笔记
开longlong了吗?
算法笔记
个人觉得,对于计算机专业的大学生来说,算法竞赛应该是性价比最高的比赛了。除了icpc和ccpc这两个比较难拿国奖之外,其他的比赛获奖难度并不大,比如蓝桥杯、天梯赛、睿抗,认真学习一年算法,水个国奖完全没问题。本篇博客是我在一年多的学习和比赛中所做的笔记,记录的内容都是我认为在比赛中高频次出现的算法,而且除了线段树之外都是比较基础的算法。应该会不断更新吧。一.算法1.数论基础循环小数转换为分数转换方
- 数论基础。
luj_1768
算法数据库c语言经验分享开发语言
许多学习软件的同学都非常希望自己能成为算法大师,事实上,所有的算法都源于数论。这里,将简单的介绍一些数论有关的知识:对几大基础数列的解读是最基本、最关键的数论修道。素数分析、质因数分解、和式分组(二元一次方程的整数解有关的分析方案)。素数分析、密码学。素数分析、关组分析。素数分析、杂论。超越数分析、PI,EE分析。根式分析(二次根式,三次根式)。一元多次方程的解分析,一元二次方程的解分析。一元高次
- 密码学:数论基础
PlyTools
符号表符号说明衍生示例有理数,即,整数集,即,表示正整数集,表示负整数集自然数集,即也表示正整数集实数集,即,同余于模有限群的阶,的最大公约数欧拉函数群生成元环由生成的主理想域表示模n形成的有限域,为素数1模运算(ModularArithmetic)1.1模约化(ModularReduction)如果我们用代替,称为此过程称为模约化,而代表了除以的余数1.2同余式(Congruences)对于,如
- RSA加密原理详解,以及RSA中的数论基础
Demonslzh
网络安全算法密码学安全
文章目录1.RSA加密算法介绍2.RSA密钥生成3.RSA加密和解密4.RSA的安全性5.涉及到的数论基础5.1.模的逆元5.1.1.扩展欧几里得算法计算模逆元5.1.2.费马小定理计算模逆元5.2欧拉函数5.3离散对数离散对数问题6.RSA加密的安全性1.RSA加密算法介绍RSA加密是一种非对称加密算法,由罗纳德·李维斯特(RonRivest)、阿迪·萨莫尔(AdiShamir)和伦纳德·阿德曼
- CSDN竞赛7期题解
昂昂累世士
其它容斥原理dfsgcd
总结这次竞赛的题目质量相对之前竞赛来说是有明显进步的,由两道经典面试题加上两道中等难度题目构成。前两道的受众可能是初学算法的同学吧,对于学算法的同学来说,前两道题没有在五分钟内AC都是不合格的。当然,偷懒这么久没学算法的我,也花了数倍的时间才ac前两道。T3主要考察问题的分析能力,实现不难。T4考察数论基础,容斥原理和GCD,注意下细节也是不难ac的。题目列表1.奇偶排序题目描述给定一个存放整数的
- 【数论基础】
萌新,菜
c++图论算法
1.质数质数筛(埃氏筛+线性筛)//线性筛#include#includeusingnamespacestd;constintN=1000010;intprimes[N],cnt;boolst[N];voidget_primes(intn){for(inti=2;i>n;get_primes(n);cout#include#include#includeusingnamespacestd;type
- 密码学基础学习
宫jx
首先声明符号:C密文,P明文,K密钥,EK加密,DK解密。一。传统密码学。基本是移位和变换,比如凯撒密码,维吉尼亚密码,hill密码等。(1)凯撒密码,密钥空间是26。加密C=(p+k)mod26。解密P=(c-k)mod26。(2)单表置换。n个元素有n!个置换(3)维吉尼亚密码。公式太复杂不想写。。。二。数论基础知识,有限域的运算,加法是按位异或,乘法比较有意思。高级加密标准(AES)就是依赖
- 【ctf-3】数论基础+Crypto初步
三金C_C
密码学算法
本周继续学习了公钥密码学的数论基础,最近事情实在太多了只能海绵里挤时间了。当然关于数论这个部分还是非常重要的,不仅实在密码学部分还在是在算法设计部分都至关重要的,本人也还没有深入接触过python,php,对于一些脚本处理大多还是用的C++,这一点日后需要提高,很多关于密码的解法大多是用python的。同时本周也进行了Cyrpto的题目练习,确实让我大开了眼界,认识了很多加密方式,对于此可以看总结
- 【蓝桥杯Java组】数论基础—素数筛、最大公约数、最小公倍数
Mymel_晗
蓝桥杯蓝桥杯leetcode算法Java数论
前言:一学就会的小技巧(一):前缀和一学就会的小技巧(二):差分一学就会的小技巧(三):快速幂一学就会的小技巧(四):龟速乘一学就会的小技巧(五):矩阵快速幂一学就会的小技巧(六):矩阵快速幂的应用省赛真题—K倍区间(前缀和,数学,思维)☕☕在解决编程题时,除了要对算法本身有足够的了解,往往还需要掌握一些基础数论。☕☕常用的数论有:最大公约数最小公倍数判断两数互质素数筛下面逐一给出代码模板~1.
- 【笔记】莫比乌斯反演(前置知识)
inferior_hjx
笔记c++算法
文章目录前言前置知识模定义性质整除定义性质同余定义性质逆元定义性质积性函数定义常见的积性函数证明欧拉函数为积性函数例1:欧拉函数线性筛例2:莫比乌斯函数线性筛前言由于文章正文太长,不得不分几篇博客。本篇为数论基础内容,学习过数论的可以跳过。最近学了莫比乌斯反演和一点狄利克雷卷积,感觉很难,也是看了很多博客才有点明,写一篇博客帮助自己理解。由于数论大多基于正整数讨论,故除特殊说明外,本文所有变量都为
- 数论
weixin_30381317
c/c++数据结构与算法
目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b.筛选法
- 除等数论
じ☆夏妮国婷☆じ
算法除等数论
除等数论目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b
- 初等数论
YinJianxiang
数论
转自:http://cppblog.com/menjitianya/archive/2015/12/02/212395.html一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗
- “kuangbin带你飞”专题计划——专题十四:数论基础
I_have_a_world
#ACM_数论#ACM_专项训练数论基础数论kuangbin带你飞
写在前面1.目前还没啥写的。开始时间:2021-05-13(其实博客上看得到该博客创建时间的)2.上一个专题刷的是网络流(博客总结),属于第一次接触。本来想的是一周特别高效,然后一周略划水,结果是五一期间高效,工作日有课略划水。还好,每个题都写了博客,收获很多3.这个专题,我想应该每个题都涉及了不一样的知识吧。也建议每个题都写博客4.写个感受?有与高四刷书的感觉了,激动,期待,轻松辛苦,有时候一本
- 数学基础知识回顾(二):集合论
Ali forever
图论拓扑学5G信息与通信
集合论前言一、数论基础与计数基础1.幂集2.唯一析因定理(算术基本定理)3.贝祖定理4.同余定理5.鸽巢原理(抽屉原理)1.几个例子2.一般性鸽巢原理二、二元关系1.关系及其表示1.笛卡尔积2.二元关系的定义3.二元关系的一些概念2.关系的性质3.关系的闭包4.等价关系与集合的划分三、函数与映射1.单射,满射与双射1.定义2.与关系矩阵和关系图的关系3.函数的复合4.几种常见函数5.函数的势四、偏
- 【ctf】Crypto初步基础概要
三金C_C
密码学ctf学习周报pythoncrypto网络安全密码学
在CTF界中,真正的Crypto高手只要一张纸一只笔以及Python环境就可以称霸全场了。(虽然是玩笑话但却是事实)当然了,密码学是整个网络安全的基础,不管你是否参加ctf类的比赛,对于密码的常识也都需要掌握,希望接下来的内容对你有所收获,也希望可以进行学习和交流,另外欢迎各位师傅的指点,鄙人不才,还请各位师傅多包涵。一个好的算法手或者数论基础极强的人经过编程培养定是优秀的Crypto选手,所以算
- 密码学-数论基础
一颗菜籽
笔记算法网络安全
数论基础整除性和带余除法整除性:b整除a:b|a、b是a的一个因子性质:a|1,a=+(-)1带余除法:a=qn+r,|r|=b>0anda%b!=0)]模运算a除以n所得的余数为a模n,记为amodn,n成为模数,ex:余数与模数同号同余:(amodn)=(bmodn)称为a和b是模n同余,记为a=b(modn)性质:相减的两个数可被模数整除,则这两个数同余交换律传递性模算数运算1、2、3可以这
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR