- [ABC304F] Shift Table(莫比乌斯反演)
yusen_123
数论算法图论c++
题目:https://www.luogu.com.cn/problem/AT_abc304_f思路:容斥原理,莫比乌斯反演应该都可以,我用的是莫比乌斯反演。注意:最好用longlong类型;代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include
- Lcms(莫比乌斯反演)
yusen_123
数论c++算法
题目路径:https://www.luogu.com.cn/problem/AT_agc038_c思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;c
- Array Equalizer(莫比乌斯反演)
yusen_123
数论算法c++
1605E-ArrayEqualizer思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;constintN=2e5+100;#defineLLlon
- 狄利克雷卷积及常见函数与莫比乌斯反演
溶解不讲嘿
数论线性代数笔记
QwQ文章目前没有题目,只有理论知识狄利克雷卷积狄利克雷卷积(DirichletConvolution)在解析数论中是一个非常重要的工具.使用狄利克雷卷积可以很方便地推出一些重要函数和公式,它在信息学竞赛和解析数论中至关重要.狄利克雷卷积是定义在数论函数间的二元运算.数论函数,是指定义域为N\mathbb{N}N(自然数),值域为C\mathbb{C}C(复数)的一类函数,每个数论函数可以视为复数
- 莫比乌斯反演(acwing2702)
yusen_123
数论算法
对于给出的n�个询问,每次求有多少个数对(x,y)(�,�),满足a≤x≤b,c≤y≤d�≤�≤�,�≤�≤�,且gcd(x,y)=kgcd(�,�)=�,gcd(x,y)gcd(�,�)函数为x�和y�的最大公约数。输入格式第一行一个整数n�。接下来n�行每行五个整数,分别表示a、b、c、d、k�、�、�、�、�。输出格式共n�行,每行一个整数表示满足要求的数对(x,y)(�,�)的个数。数据范
- 洛谷p1829(莫比乌斯反演)
yusen_123
数论c++算法数据结构
思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#includeusingnamespacestd;constdoubleeps=1e-8;constintN=1e7+10;constlonglongmod=20101009;#defineLLlonglongintpre[N],st[N];intn,cn,m;LLmu[N];
- P3704数字表格(莫比乌斯反演)
yusen_123
数论算法
题目背景Doris刚刚学习了fibonacci数列。用fi表示数列的第i项,那么0=0,1=1f0=0,f1=1fn=fn−1+fn−2,n≥2题目描述Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是gcd(i,j),其中gcd(i,j)表示i,j的最大公约数。Doris的表格中共有n×m个数,她想知道这些数的乘积是多少。答案对109+7取模。输入格式本题单个测试点内
- BZOJ 2440 完全平方数 (容斥+莫比乌斯反演+二分)
_TCgogogo_
数论二分/三分/两点法组合数学BZOJ莫比乌斯反演容斥二分
2440:[中山市选2011]完全平方数TimeLimit:10SecMemoryLimit:128MBSubmit:1673Solved:799[Submit][Status][Discuss]Description小X自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而这丝毫不影响他对其他数的热爱。这天是小X的生日,
- 《算法竞赛进阶指南》------数论习题篇1
axtices
数论算法数论
文章目录练习9:XORBZOJ2115(*线性基。求图中异或和,可谓经典中的经典)练习10:新Nim游戏BZOJ3105(*NIM进阶版NIM博弈+线性基)练习11:排列计数BZOJ4517(*错位排序)练习12:SkyCode(*容斥原理$莫比乌斯反演经典)练习16魔法珠CH3B16(SG博弈)练习17:GeorgiaandBob(*NIM博弈三定理)**错误思路**:**NIM博弈三定理**:
- YYHS-NOIP模拟赛-gcd
weixin_33845477
题解这道题题解里说用莫比乌斯反演做(我这个蒟蒻怎么会做呢)但是不会,所以我们另想方法,这里我们用容斥来做我们先把500000以内的所有质数筛出来每次读入编号的时候,先把编号对应的这个数分解质因数然后我们dfs枚举这个数的质因子取或不取,我们用t来表示取的质因子个数,如果t为奇数,ans就加,反之就减(容斥原理)1#include2#defineN2000053#defineM5000054#def
- 2019.6.summary
LMB_001
刷题总结刷题总结
2019.6.1BZOJ3028:食物生成函数题,母函数乘起来就好了BZOJ3544:[ONTAK2010]CreativeAccounting嗯,就是可以用set维护前缀和,取后继或最小数贪心就好啦BZOJ2820:YY的GCD莫比乌斯反演BZOJ4173:数学https://blog.csdn.net/zhhx2001/article/details/52300924由这个blog里的证明我们
- 莫比乌斯函数
林苏泽
数论
目录前导积性函数莫比乌斯函数莫比乌斯反演莫比乌斯反演定理莫比乌斯反演定理证明莫比乌斯反演另一性质(与欧拉函数有关)前导要学习莫比乌斯函数需要学习到积性函数,深度理解欧拉筛。先说说什么是积性函数吧。积性函数其实积性函数非常好理解,定义积性函数:若gcd(a,b)=1,且满足f(ab)=f(a)f(b),则称f(x)为积性函数完全积性函数:对于任意正整数a,b,都满足f(ab)=f(a)f(b),则称
- 积性函数及其初级应用
SMT0x400
学习算法数学
积性函数及其初级应用垃圾博客,我本地LaTeX挂了,艹大量内容和入门方式都参考了莫比乌斯反演与数论函数。感谢CMD大爷!0xFF前置知识1.质数及其判定,质因数及其分解小学课本里面讲过质数的定义了,不细讲。分解质因数也是基本功。2.筛法同学们想必都会埃氏筛法吧,即对于每一个质数枚举其倍数筛除整个值域内的所有数。如果你学得更远一点,那么你会使用欧拉筛法。它的算法思想这里不再赘述。后面的一切练习题都是
- 数论知识点总结(一)
Mark 85
数学数论算法数据结构
文章目录目录文章目录前言一、数论有哪些二、题法混讲1.素数判断,质数,筛法2.最大公约数和最小公倍数3.快速幂4.约数前言现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣!一、数论有哪些数论原根,素数判断,质数,筛法最大公约数,gcd扩展欧几里德算法,快速幂,exgcd,不定方程,进制,中国剩余定理,CRT,莫比乌斯反演,逆元,Lucas定理,类欧几里得算法,调和级数
- HAOI2011 Problem b
SHOJYS
算法c++
Problemblink做法:莫比乌斯反演。思路:对于给出的nnn个询问,每次求有多少个数对(x,y)(x,y)(x,y),满足a≤x≤ba\lex\leba≤x≤b,c≤y≤dc\ley\ledc≤y≤d,且gcd(x,y)=k\gcd(x,y)=kgcd(x,y)=k,gcd(x,y)\gcd(x,y)gcd(x,y)函数为xxx和yyy的最大公约数。我们设f(n)=∑i=1x∑j=1y
- HDU 6715算术 莫比乌斯反演
9fe5164d41b8
@[toc]题意,求。链接:hdu6715思路方法一:打表得出:进一步按套路优化,提出,令得:首先这个东西是,是一个积性函数,所以可以筛出来。这个东西可以按分别预处理出来,预处理的复杂度和埃式筛一样是,空间复杂度也是。最后上面这个式子就可以求和了。HDU数据证明,不预处理第二点更快。。。方法二:已知又因为:因此:因为当不为时:而当为时,自然也是,所以也不会影响下面这个式子:接下来的步骤和方法一就相
- 莫比乌斯反演
Evan_song1234
数学算法与数据结构算法
莫比乌斯反演主要用于快速计算一些阴间式子(包含gcd(i,j)\gcd(i,j)gcd(i,j)等)。至于如何应用,往下看。莫比乌斯函数μ(x)={1x=10n含有平方因子(−1)kk为n本质不同质因子个数\mu(x)=\begin{cases}1&x=1\\0&n含有平方因子\\(-1)^k&k为n本质不同质因子个数\end{cases}μ(x)=⎩⎨⎧10(−1)kx=1n含有平方因子k为n
- 莫比乌斯反演
WangLi&a
莫比乌斯反演狄利克雷卷积杜教筛数论分块数论
莫比乌斯反演定义莫比乌斯反演公式:[n=1]=∑d∣nμ(d)[n=1]=\underset{d|n}\sum\mu(d)[n=1]=d∣n∑μ(d)其他几种莫比乌斯反演的形式:标准形式:f(n)=∑d∣ng(d)⇔g(n)=∑d∣nμ(d)f(nd)f(n)=\underset{d|n}\sumg(d)\Leftrightarrowg(n)=\underset{d|n}\sum\mu(d)f(\
- 【Codeforces】 CF1436F Sum Over Subsets
Farmer_D
Codeforces算法
题目链接CF方向Luogu方向题目解法首先考虑消去gcdgcdgcd的限制考虑莫比乌斯反演优先枚举ddd可得答案为∑d=1nμ(d)∗ans(d)\sum_{d=1}^{n}\mu(d)*ans(d)∑d=1nμ(d)∗ans(d)其中ans(d)ans(d)ans(d)是所有aia_iai是ddd的倍数组成的答案令aia_iai为ddd的倍数的所有数的可重集为SSS考虑∑x∈Ax∗∑y∈By=∑
- 数论分块学习笔记
Dawn-_-cx
数论学习笔记算法数论c++数论分块杜教筛
准备开始复习莫比乌斯反演,杜教筛这一部分,先复习一下数论分块0.随便说说数论分块可以计算如下形式的式子∑i=1nf(i)g(⌊ni⌋)\sum_{i=1}^{n}f(i)g(\lfloor\frac{n}{i}\rfloor)∑i=1nf(i)g(⌊in⌋)。利用的原理是⌊ni⌋\lfloor\frac{n}{i}\rfloor⌊in⌋的不同的值不超过2n2\sqrt{n}2n个。当我们可以在O(
- C/C++数论/数学算法总结(关于数学知识以及一些比较重要的算法)
Xq_23
大数算法编程语言
总结C/C++关于数学知识以及一些比较重要的算法1.数论整数型问题:整除、最大公约数、最小公倍数、欧几里得算法、扩展欧几里得算法.素数问题:素数判断、区间素数统计.同余问题:模运算、同于方程、快速幂、中国剩余定理、逆元、整数分解、同余定理.不定方程.乘性函数:欧拉函数、伪随机数、莫比乌斯反演.2.组合数学排列组合:技术原理、特殊排列、排列生成、组合生成.母函数:普通型、指数型.递推关系:斐波那契数
- 「SDOI2008」仪仗队
L('ω')┘脏脏包└('ω')」
题解题解
目录1.介绍2.分析3.代码1.有注释版2.copy专用1.介绍(同上,教练把lg禁了,暂时给不了网址+还我LG!!!)怎么说呢,弱化forest(forest网址下次补上)就这一个弱化,就从莫比乌斯反演欧拉函数2.分析看一看图片其实我们可以沿着对角线就是一下把它变成、与(截屏截的好丑呀qwq)实际上,我们只需要求的总数给它乘二加三(因为有(1,0),(1,1),(0,1))即可问题又来了:怎么求
- 算法学习笔记(24): 狄利克雷卷积和莫比乌斯反演
jeefy
#狄利克雷卷积和莫比乌斯反演>看了《组合数学》,再听了学长讲的……感觉三官被颠覆……[TOC]##狄利克雷卷积如此定义:$$(f*g)(n)=\sum_{xy=n}f(x)g(y)$$或者可以写为$$(f*g)(n)=\sum_{d|n}f(d)g
- [HAOI2011]Problem b(莫比乌斯反演)
何况虚度光阴
数论c++算法
[HAOI2011]Problemb题目链接:https://www.luogu.com.cn/problem/P2522题目描述对于给出的nnn个询问,每次求有多少个数对(x,y)(x,y)(x,y),满足a≤x≤ba\lex\leba≤x≤b,c≤y≤dc\ley\ledc≤y≤d,且gcd(x,y)=k\gcd(x,y)=kgcd(x,y)=k,gcd(x,y)\gcd(x,y)gcd(
- P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
何况虚度光阴
数论c++图论算法
[国家集训队]Crash的数字表格/JZPTAB题目描述今天的数学课上,Crash小朋友学习了最小公倍数(LeastCommonMultiple)。对于两个正整数aaa和bbb,lcm(a,b)\text{lcm}(a,b)lcm(a,b)表示能同时整除aaa和bbb的最小正整数。例如,lcm(6,8)=24\text{lcm}(6,8)=24lcm(6,8)=24。回到家后,Crash还在想着课
- 莫比乌斯反演-奇妙的欧拉
An_Account
让我们从一道题开始求\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j),(n首先对gcd(i,j)分类,有\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)=\sum_{k=1}^{n}k\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=k]同时除以k=\sum_{k=1}^{n}k\sum_{i=1}^{\lfloor\fra
- 数学/数论专题:莫比乌斯函数与欧拉函数
Plozia
学习笔记+专项训练数学/数论算法
数学/数论专题:莫比乌斯函数与欧拉函数(进阶)0.前言1.前置知识2.正文3.总结4.参考资料0.前言本篇文章会从狄利克雷卷积的角度,讨论莫比乌斯函数与欧拉函数的相关性质。或者说就是利用狄利克雷卷积重新证一遍这两个函数的性质以及弄出几个新的式子。其实我觉得这块还是挺妙的,也可能是我做DP和数据结构做疯了(1.前置知识首先您需要知道欧拉函数,狄利克雷卷积,莫比乌斯函数+莫比乌斯反演。如果不知道,可以
- 【笔记】莫比乌斯反演-从入门到入土
inferior_hjx
笔记算法c++
上一篇:莫比乌斯反演(前置知识)文章目录莫比乌斯反演关于反演莫比乌斯函数定义性质莫比乌斯反演公式公式1公式2整除分块引入关于整除分块基础推导简单扩展莫比乌斯反演的应用例1:证明下式成立例2:YY的GCD例3:Problemb例4:完全平方数例5:约数个数和总结莫比乌斯反演正片开始关于反演顾名思义,反演就是反向演变,举个栗子,若有F(n)=k⋅f(n)F(n)=k\cdotf(n)F(n)=k⋅f(
- 【笔记】莫比乌斯反演(前置知识)
inferior_hjx
笔记c++算法
文章目录前言前置知识模定义性质整除定义性质同余定义性质逆元定义性质积性函数定义常见的积性函数证明欧拉函数为积性函数例1:欧拉函数线性筛例2:莫比乌斯函数线性筛前言由于文章正文太长,不得不分几篇博客。本篇为数论基础内容,学习过数论的可以跳过。最近学了莫比乌斯反演和一点狄利克雷卷积,感觉很难,也是看了很多博客才有点明,写一篇博客帮助自己理解。由于数论大多基于正整数讨论,故除特殊说明外,本文所有变量都为
- 莫比乌斯反演经典例题(1)
__LazyCat__
莫比乌斯反演算法c++
链接:P2257YY的GCD-洛谷|计算机科学教育新生态(luogu.com.cn)题意:给定n,m,求∑i=1n∑j=1m[gcd(i,j)==prime]\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==prime]∑i=1n∑j=1m[gcd(i,j)==prime]。题解:首先枚举质数可化为∑d∈primemin(n,m)∑i=1n/d∑j=1m/d[gcd(i
- mongodb3.03开启认证
21jhf
mongodb
下载了最新mongodb3.03版本,当使用--auth 参数命令行开启mongodb用户认证时遇到很多问题,现总结如下:
(百度上搜到的基本都是老版本的,看到db.addUser的就是,请忽略)
Windows下我做了一个bat文件,用来启动mongodb,命令行如下:
mongod --dbpath db\data --port 27017 --directoryperdb --logp
- 【Spark103】Task not serializable
bit1129
Serializable
Task not serializable是Spark开发过程最令人头疼的问题之一,这里记录下出现这个问题的两个实例,一个是自己遇到的,另一个是stackoverflow上看到。等有时间了再仔细探究出现Task not serialiazable的各种原因以及出现问题后如何快速定位问题的所在,至少目前阶段碰到此类问题,没有什么章法
1.
package spark.exampl
- 你所熟知的 LRU(最近最少使用)
dalan_123
java
关于LRU这个名词在很多地方或听说,或使用,接下来看下lru缓存回收的实现
1、大体的想法
a、查询出最近最晚使用的项
b、给最近的使用的项做标记
通过使用链表就可以完成这两个操作,关于最近最少使用的项只需要返回链表的尾部;标记最近使用的项,只需要将该项移除并放置到头部,那么难点就出现 你如何能够快速在链表定位对应的该项?
这时候多
- Javascript 跨域
周凡杨
JavaScriptjsonp跨域cross-domain
 
- linux下安装apache服务器
g21121
apache
安装apache
下载windows版本apache,下载地址:http://httpd.apache.org/download.cgi
1.windows下安装apache
Windows下安装apache比较简单,注意选择路径和端口即可,这里就不再赘述了。 2.linux下安装apache:
下载之后上传到linux的相关目录,这里指定为/home/apach
- FineReport的JS编辑框和URL地址栏语法简介
老A不折腾
finereportweb报表报表软件语法总结
JS编辑框:
1.FineReport的js。
作为一款BS产品,browser端的JavaScript是必不可少的。
FineReport中的js是已经调用了finereport.js的。
大家知道,预览报表时,报表servlet会将cpt模板转为html,在这个html的head头部中会引入FineReport的js,这个finereport.js中包含了许多内置的fun
- 根据STATUS信息对MySQL进行优化
墙头上一根草
status
mysql 查看当前正在执行的操作,即正在执行的sql语句的方法为:
show processlist 命令
mysql> show global status;可以列出MySQL服务器运行各种状态值,我个人较喜欢的用法是show status like '查询值%';一、慢查询mysql> show variab
- 我的spring学习笔记7-Spring的Bean配置文件给Bean定义别名
aijuans
Spring 3
本文介绍如何给Spring的Bean配置文件的Bean定义别名?
原始的
<bean id="business" class="onlyfun.caterpillar.device.Business">
<property name="writer">
<ref b
- 高性能mysql 之 性能剖析
annan211
性能mysqlmysql 性能剖析剖析
1 定义性能优化
mysql服务器性能,此处定义为 响应时间。
在解释性能优化之前,先来消除一个误解,很多人认为,性能优化就是降低cpu的利用率或者减少对资源的使用。
这是一个陷阱。
资源时用来消耗并用来工作的,所以有时候消耗更多的资源能够加快查询速度,保持cpu忙绿,这是必要的。很多时候发现
编译进了新版本的InnoDB之后,cpu利用率上升的很厉害,这并不
- 主外键和索引唯一性约束
百合不是茶
索引唯一性约束主外键约束联机删除
目标;第一步;创建两张表 用户表和文章表
第二步;发表文章
1,建表;
---用户表 BlogUsers
--userID唯一的
--userName
--pwd
--sex
create
- 线程的调度
bijian1013
java多线程thread线程的调度java多线程
1. Java提供一个线程调度程序来监控程序中启动后进入可运行状态的所有线程。线程调度程序按照线程的优先级决定应调度哪些线程来执行。
2. 多数线程的调度是抢占式的(即我想中断程序运行就中断,不需要和将被中断的程序协商)
a) 
- 查看日志常用命令
bijian1013
linux命令unix
一.日志查找方法,可以用通配符查某台主机上的所有服务器grep "关键字" /wls/applogs/custom-*/error.log
二.查看日志常用命令1.grep '关键字' error.log:在error.log中搜索'关键字'2.grep -C10 '关键字' error.log:显示关键字前后10行记录3.grep '关键字' error.l
- 【持久化框架MyBatis3一】MyBatis版HelloWorld
bit1129
helloworld
MyBatis这个系列的文章,主要参考《Java Persistence with MyBatis 3》。
样例数据
本文以MySQL数据库为例,建立一个STUDENTS表,插入两条数据,然后进行单表的增删改查
CREATE TABLE STUDENTS
(
stud_id int(11) NOT NULL AUTO_INCREMENT,
- 【Hadoop十五】Hadoop Counter
bit1129
hadoop
1. 只有Map任务的Map Reduce Job
File System Counters
FILE: Number of bytes read=3629530
FILE: Number of bytes written=98312
FILE: Number of read operations=0
FILE: Number of lar
- 解决Tomcat数据连接池无法释放
ronin47
tomcat 连接池 优化
近段时间,公司的检测中心报表系统(SMC)的开发人员时不时找到我,说用户老是出现无法登录的情况。前些日子因为手头上 有Jboss集群的测试工作,发现用户不能登录时,都是在Tomcat中将这个项目Reload一下就好了,不过只是治标而已,因为大概几个小时之后又会 再次出现无法登录的情况。
今天上午,开发人员小毛又找到我,要我协助将这个问题根治一下,拖太久用户难保不投诉。
简单分析了一
- java-75-二叉树两结点的最低共同父结点
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import ljn.help.*;
public class BTreeLowestParentOfTwoNodes {
public static void main(String[] args) {
/*
* node data is stored in
- 行业垂直搜索引擎网页抓取项目
carlwu
LuceneNutchHeritrixSolr
公司有一个搜索引擎项目,希望各路高人有空来帮忙指导,谢谢!
这是详细需求:
(1) 通过提供的网站地址(大概100-200个网站),网页抓取程序能不断抓取网页和其它类型的文件(如Excel、PDF、Word、ppt及zip类型),并且程序能够根据事先提供的规则,过滤掉不相干的下载内容。
(2) 程序能够搜索这些抓取的内容,并能对这些抓取文件按照油田名进行分类,然后放到服务器不同的目录中。
- [通讯与服务]在总带宽资源没有大幅增加之前,不适宜大幅度降低资费
comsci
资源
降低通讯服务资费,就意味着有更多的用户进入,就意味着通讯服务提供商要接待和服务更多的用户,在总体运维成本没有由于技术升级而大幅下降的情况下,这种降低资费的行为将导致每个用户的平均带宽不断下降,而享受到的服务质量也在下降,这对用户和服务商都是不利的。。。。。。。。
&nbs
- Java时区转换及时间格式
Cwind
java
本文介绍Java API 中 Date, Calendar, TimeZone和DateFormat的使用,以及不同时区时间相互转化的方法和原理。
问题描述:
向处于不同时区的服务器发请求时需要考虑时区转换的问题。譬如,服务器位于东八区(北京时间,GMT+8:00),而身处东四区的用户想要查询当天的销售记录。则需把东四区的“今天”这个时间范围转换为服务器所在时区的时间范围。
- readonly,只读,不可用
dashuaifu
jsjspdisablereadOnlyreadOnly
readOnly 和 readonly 不同,在做js开发时一定要注意函数大小写和jsp黄线的警告!!!我就经历过这么一件事:
使用readOnly在某些浏览器或同一浏览器不同版本有的可以实现“只读”功能,有的就不行,而且函数readOnly有黄线警告!!!就这样被折磨了不短时间!!!(期间使用过disable函数,但是发现disable函数之后后台接收不到前台的的数据!!!)
- LABjs、RequireJS、SeaJS 介绍
dcj3sjt126com
jsWeb
LABjs 的核心是 LAB(Loading and Blocking):Loading 指异步并行加载,Blocking 是指同步等待执行。LABjs 通过优雅的语法(script 和 wait)实现了这两大特性,核心价值是性能优化。LABjs 是一个文件加载器。RequireJS 和 SeaJS 则是模块加载器,倡导的是一种模块化开发理念,核心价值是让 JavaScript 的模块化开发变得更
- [应用结构]入口脚本
dcj3sjt126com
PHPyii2
入口脚本
入口脚本是应用启动流程中的第一环,一个应用(不管是网页应用还是控制台应用)只有一个入口脚本。终端用户的请求通过入口脚本实例化应用并将将请求转发到应用。
Web 应用的入口脚本必须放在终端用户能够访问的目录下,通常命名为 index.php,也可以使用 Web 服务器能定位到的其他名称。
控制台应用的入口脚本一般在应用根目录下命名为 yii(后缀为.php),该文
- haoop shell命令
eksliang
hadoophadoop shell
cat
chgrp
chmod
chown
copyFromLocal
copyToLocal
cp
du
dus
expunge
get
getmerge
ls
lsr
mkdir
movefromLocal
mv
put
rm
rmr
setrep
stat
tail
test
text
- MultiStateView不同的状态下显示不同的界面
gundumw100
android
只要将指定的view放在该控件里面,可以该view在不同的状态下显示不同的界面,这对ListView很有用,比如加载界面,空白界面,错误界面。而且这些见面由你指定布局,非常灵活。
PS:ListView虽然可以设置一个EmptyView,但使用起来不方便,不灵活,有点累赘。
<com.kennyc.view.MultiStateView xmlns:android=&qu
- jQuery实现页面内锚点平滑跳转
ini
JavaScripthtmljqueryhtml5css
平时我们做导航滚动到内容都是通过锚点来做,刷的一下就直接跳到内容了,没有一丝的滚动效果,而且 url 链接最后会有“小尾巴”,就像#keleyi,今天我就介绍一款 jquery 做的滚动的特效,既可以设置滚动速度,又可以在 url 链接上没有“小尾巴”。
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/37.htmHTML文件代码:
&
- kafka offset迁移
kane_xie
kafka
在早前的kafka版本中(0.8.0),offset是被存储在zookeeper中的。
到当前版本(0.8.2)为止,kafka同时支持offset存储在zookeeper和offset manager(broker)中。
从官方的说明来看,未来offset的zookeeper存储将会被弃用。因此现有的基于kafka的项目如果今后计划保持更新的话,可以考虑在合适
- android > 搭建 cordova 环境
mft8899
android
1 , 安装 node.js
http://nodejs.org
node -v 查看版本
2, 安装 npm
可以先从 https://github.com/isaacs/npm/tags 下载 源码 解压到
- java封装的比较器,比较是否全相同,获取不同字段名字
qifeifei
非常实用的java比较器,贴上代码:
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;
import net.sf.json.JsonConfig;
i
- 记录一些函数用法
.Aky.
位运算PHP数据库函数IP
高手们照旧忽略。
想弄个全天朝IP段数据库,找了个今天最新更新的国内所有运营商IP段,copy到文件,用文件函数,字符串函数把玩下。分割出startIp和endIp这样格式写入.txt文件,直接用phpmyadmin导入.csv文件的形式导入。(生命在于折腾,也许你们觉得我傻X,直接下载人家弄好的导入不就可以,做自己的菜鸟,让别人去说吧)
当然用到了ip2long()函数把字符串转为整型数
- sublime text 3 rust
wudixiaotie
Sublime Text
1.sublime text 3 => install package => Rust
2.cd ~/.config/sublime-text-3/Packages
3.mkdir rust
4.git clone https://github.com/sp0/rust-style
5.cd rust-style
6.cargo build --release
7.ctrl