- ORB-SLAM的重定位中使用的EPnP算法解析
rookie-rookie-lu
ORB-SLAM算法计算机视觉人工智能
EPnP:AnAccurateO(n)SolutiontothePnPProblem详解EPnP算法的中心思想就是以四个世界坐标系下的控制点[cw1cw2cw3cw4][c_w^1\quadc_w^2\quadc_w^3\quadc_w^4][cw1cw2cw3cw4]通过投影约束和欧式变换下的距离不变约束,求解相机坐标系下的相应控制点[cc1cc2cc3cc4][c_c^1\quadc_c^2\
- ORB-SLAM策略思考之RANSAC
rookie-rookie-lu
ORB-SLAM算法人工智能计算机视觉机器人
ORB-SLAM策略思考之RANSAC1.初始化器的RANSACORB-SLAM中的初始化器是一个端到端的地图初始化策略,即不需要人的参与双线程同时计算本质矩阵和单应性矩阵使用基于RANSAC和卡方检验的评价方法为了保证两种算法评价的一致性,计算本质矩阵F和单应性矩阵H都采用统一的8点法、5.991卡方值和相同的RANSAC迭代次数。对每次RANSAC迭代,进行最佳得分对应的变换矩阵、内点位置进行
- ORB-SLAM中的RANSAC算法解析
rookie-rookie-lu
ORB-SLAM算法人工智能计算机视觉
RANSAC算法解析RANSAC是一种在具有噪声的模型中去估计最优的一个算法,其核心思想是采用不断迭代的方法去选择一组全是内点的集合,并采用该集合进行模型估计的一种方法,可以提高模型估计的鲁棒性。假设目前有KKK组采集到的数据,但是数据中的一些点是噪声点,如何使用RANSAC去根据这些有噪声的数据去估计一个比较好的模型呢?选择任意一种能够根据当前采集的数据进行模型评估的方法。使用有放回抽样的方式抽
- ORB-SLAM中的地图点策略
rookie-rookie-lu
ORB-SLAMORB-SLAM计算机视觉机器人感知
ORB-SLAM中的地图点策略1平均观测方向地图点中维护了一个向量,这个向量代表的含义是关键帧光心到单位方向向量的平均向量vmean=1k∑i=0kvnormv_{mean}=\frac{1}{k}\sum_{i=0}^{k}v_{norm}vmean=k1∑i=0kvnorm,值得注意的是,vmeanv_{mean}vmean并不是单位向量,而是一些单位向量的平均值地图点的平均观测方向给定了一个
- ORB-SLAM笔记——ORB-SLAM3的IMU初始化(1)理论部分
RoBOt__Dreamer
SLAM
上一篇blog立的flag,哎最近工作虽然也是快忙炸了但面对这么好的一个作品,你就忍不住挤时间也要学他啊哈哈。那么我们开始!在正式说它的IMU初始化部分之前,还是跟随作者论文的思路,咱们再把Visual-Inertial的架构梳理一下。首先对于一个纯视觉的系统来说,单目也好,双目也罢,我们主要关心的还是每一个pose的6Dof,对应的状态空间呢也就是六维。考虑到单目的尺度问题,状态空间也就是多了一
- ORB-SLAM 论文阅读
KrMzyc
SLAM论文阅读
论文链接ORB-SLAM0.Abstract本文提出了ORB-SLAM,一种基于特征的单目同步定位和建图(SLAM)系统该系统对严重的运动杂波具有鲁棒性,允许宽基线环路闭合和重新定位,并包括全自动初始化选择重建的点和关键帧的适者生存策略具有出色的鲁棒性,并生成紧凑且可跟踪的地图1.Intro捆绑调整(BA)可以提供相机定位的准确估计以及稀疏几何重建,前提是提供了强大的匹配网络和良好的初始猜测。实时
- 视觉SALM与激光SLAM的区别
Jiqiang_z
LOAM系列阅读笔记SLAM学习笔记机器学习人工智能深度学习
前言:这里比较一下视觉SLAM和激光SLAM的区别,仅比较其在算法层面上的一些不同,这里拿视觉SLAM算法:ORB-SLAM系列和激光SLAM算法:LOAM系列对比。一:特征提取1.ORB-SLAM(视觉SLAM)ORB-SLAM算法采用ORB特征点,ORB特征点一般提取在角点上面,每一个ORB特征点具有以下信息:位置信息:该ORB特征点所在的图像像素坐标。描述子信息:用来描述该特征点的周围信息。
- V-SLAM综述:一、ORB-SLAM
循梦渡
一、ORB特征ORB(OrientedFASTandRotatedBRIEF)是一种快速特征点提取和描述的算法。ORB算法分为两部分,分别是特征点提取和特征点描述。特征提取是由FAST(FeaturesfromAcceleratedSegmentTest)算法发展来的,特征点描述是根据BRIEF(BinaryRobustIndependentElementaryFeatures)特征描述算法改进的
- ORB-SLAM 关于地图点MapPoint的观测距离和观测方向的理解
Caleb tam
orb-slamjavaservletjunit
note:不知道对错,但是先记录一下方便以后回溯整体逻辑是:构建参考关键帧->通过参考关键帧获得平均观测距离:mfMinDistance和mfMaxDistance->(通过这个距离匹配特征点的level)这个还不确定,后续接着看构建参考关键帧构造函数中,创建该地图点的参考帧被设为参考关键帧.若当前地图点对参考关键帧的观测被删除(EraseObservation(KeyFrame*pKF)),则取
- ORB-SLAM坐标系到ROS坐标系的转换
Jiqiang_z
机器人自动驾驶人工智能
Step0:整体流程ros::PublisherCamPose_Pub;geometry_msgs::PoseStampedCam_Pose;cv::MatCamera_Pose;tf::Transformslam_tf;CamPose_Pub=nh.advertise("/Camera_Pose",1);Camera_Pose=SLAM.TrackRGBD(imRGB,imD,tframe);P
- 传统ORB-SLam中位姿优化中雅克比矩阵讲解
三轮车的视觉进阶_
ORBSLAM2ORBSLAM雅克比矩阵双目
由于之前的鱼眼orbslam只有单目部分,所以在优化时也只是用了单目位姿优化和三维坐标点优化,并没有将双目的优化添加进去,不知道是否对结果有影响;这里添加双目的优化部分,主要是将添加雅克比矩阵;orbslam中的优化部分使用了g2o库,具体的详细讲解可以参考https://zhuanlan.zhihu.com/p/58521241讲解的很详细这里不加赘述,主要从单目的雅克比矩阵讲解,延伸到双目的雅
- ORB-SLAM系列算法相关介绍(综合版)
花花少年
SLAM1024程序员节ORB-SLAM
一、参考资料ORB-SLAM2详解(一)简介(公开课)视觉SLAM原理与ORB-SLAM3系列算法二、相关介绍1.ORB简介ORB指的是一种旋转不变性特征。2.ORB-SLAM系列算法的演进三、ORB-SLAM论文:ORB-SLAM:AVersatileandAccurateMonocularSLAMSystemgithub代码仓库:ORB-SLAMORB-SLAM官网:ORB-SLAM1.ORB
- ORB-SLAM3算法1之Ubuntu18.04+ROS-melodic安装ORB-SLAM3及各种问题解决
ZPILOTE
ORB-SLAM2/3orbslam3opencvubuntu18.04eigen3pangolinvslam
文章目录0引言1安装依赖1.1opencv安装1.2Eigen3安装1.3Pangolin安装1.4其他2编译安装ORB-SLAM32.1build.sh2.2build_ros.sh0引言ORB-SLAM3,在之前ORB-SLAM和ORB-SLAM2的基础上,新增了IMU多传感器融合SLAM,这是第一个能够使用针孔和鱼眼镜头模型通过单目、立体和RGB-D相机执行视觉、视觉惯性和多地图SLAM的系
- orb-slam3编译手册(Ubuntu20.04)
量子西瓜
自动驾驶
orb-slam3编译手册(Ubuntu20.04)一、环境要求1.安装git2.安装g++3.安装CMake4.安装vi编辑器二、源代码下载三、依赖库下载1.Eigen安装2.Pangolin安装3.opencv安装4.安装Python&libssl-dev5.安装boost库三、安装orb-slam3四、数据集下载及测试写在前面:本文是在Ubuntu20.04系统上从零编译运行orb-slam
- ORB-SLAM安装过程遇到问题记录整理
Gene_2022
ubuntuorb-slam
一、ORB-SLAM21.c++error:‘decay_t’isnotamemberof‘std’如下图所示:解决方法:修改ORB_SLAM的CMAKELIST.txt文件,将set(CMAKE_CXX_FLAGS"${CMAKE_CXX_FLAGS}-std=c++11")修改为set(CMAKE_CXX_STANDARD14)2./usr/bin/ld:找不到-lEigen3::EigenE
- orb-slam如何运行ros例程
Xi Zi
人工智能
要运行orb-slam的ROS例程,需要先安装orb-slam的ROS包,然后在ROS系统中运行相应的launch文件。具体步骤如下:安装orb-slam的ROS包,可以使用以下命令:sudoapt-getinstallros--orb-slam2-ros启动ROS系统,然后运行orb-slam的launch文件。例如,要运行orb-slam2_mono程序,可以使用以下命令:roslauncho
- SLAM之BundleFusion测试自制Rosbag数据集的可行方案
我是工程狮
计算机视觉环境配置SLAMBundleFusionRosbagsensordata.sens
SLAM之BundleFusion测试自制Rosbag数据集前言最近在做三维重建与轨迹定位相关的研究,需要以一些传统的重建算法做Baselines,我们选择了KinectFusion、ElasticFusion、BundleFusion、ORB-SLAM、VINS等典型的算法为基础,为了使发布的数据集更具有代表性,我们采用了RealSense录制了ROS格式的数据集,并基于此数据集和SLAM算法展
- M2DGR数据集在一些SLAM框架上的配置与运行:ORB-SLAM系列、VINS-Mono、LOAM系列、FAST-LIO系列、hdl_graph_slam
ZARD帧心
SLAM主流开源框架部署自动驾驶ubuntulinux
文章目录一、M2DGR数据集二、ORB-SLAM22.1配置参数2.2单目三、ORB-SLAM33.1配置参数3.2运行单目+IMU四、VINS-Mono4.1配置参数4.2运行单目+IMU五、DM-VIO5.1安装5.2配置运行六、A-LOAM七、LeGO-LOAM八、LIO-SAM8.1配置参数8.2运行九、LVI-SAM9.1配置参数9.2运行十、LINS10.1安装10.2配置参数10.3
- ORB-SLAM: a Versatile and Accurate Monocular SLAM System
weixin_44035919
SLAM论文阅读自动驾驶计算机视觉人工智能
摘要本文提出了ORB-SLAM,一种基于特征的单目SLAM系统,它可以在室内外的大小环境中实时运行。该系统对严重的运动噪声具有鲁棒性,允许宽基线闭环和重定位,并且可以全自动的初始化。基于近年来的优秀算法,我们设计了一个全新的系统,它使用和所有的其他SLAM系统相同的工作流程,包括:跟踪、建图、重定位和闭环矫正。选择重建的地图点和关键帧的**“适者生存”策略**使得系统具有极好的鲁棒性,并生成仅在场
- 【论文翻译】ORB-SLAM: A Versatile and Accurate Monocular SLAM System
fish小余儿
SLAM论文计算机视觉slamc++linux矩阵
摘要本文介绍了ORB-SLAM,一种基于特征的单目SLAM系统,该系统可在大小场景和室内外环境中实时运行。该系统对复杂的剧烈运动具有鲁棒性,允许宽基线闭环和重定位,且包含完整的自动初始化。在近年来优秀算法的基础上,我们从头开始设计了一个新系统,该系统在所有SLAM任务中使用相同的功能:跟踪、建图、重定位和回环。选择重建点和关键帧的适当的策略具有很好的鲁棒性,并生成一个紧凑且可跟踪的地图,该地图只有
- 本质矩阵 基础矩阵 单应矩阵 (1)
Gone_float
相机线性代数算法
本质矩阵基础矩阵单应矩阵基本概念:本质矩阵E(EssentialMatrix):反映【空间一点P的像点】在【不同视角摄像机】下【摄像机坐标系】中的表示之间的关系。基础矩阵F(FundamentalMatrix):反映【空间一点P的像素点】在【不同视角摄像机】下【图像坐标系】中的表示之间的关系。ORB-SLAM点云地图中相机的位姿初始化,无论算法工作在平面场景,还是非平面场景下,都能够完成初始化的工
- ORB-SLAM2 --- Tracking::Track 追踪线程解析
APS2023
视觉SLAM-ORBSLAM2原理解析人工智能slam计算机视觉orbslam2
1.函数作用ORB-SLAM2的三大线程之一---跟踪线程,负责估计运动信息、跟踪局部地图。追踪线程的主要工作原理就是我们从数据集中读入一帧帧,刚开始的时候跟踪线程没有进行初始化(没有初始化不知道世界坐标系的原点和相机的位姿),我们初始化跟踪线程,初始成功之后把符合要求的第一帧的相机坐标作为世界坐标系的原点,在之后传进来的每帧,用三种跟踪方式计算相机的坐标,并生成地图点。总体来说,ORB-SLAM
- 实测 (二)NVIDIA Xavier NX + D435i / 奥比中光Astrapro 相机+ ORB-SLAM 2 + 3 稠密回环建图
全日制一起混
NX实测ubuntu嵌入式硬件计算机视觉c++
开发环境:NX+Ubuntu18.04+ROS-melodic接着上篇,开始orb-slam2稠密回环建图二、NX+D435i+ORB-SLAM2稠密回环建图先上效果图这里感谢大神提供一个可回环的稠密地图版本:https://github.com/xiaobainixi/ORB-SLAM2_RGBD_DENSE_MAP.git2.1安装依赖(和orb-slam2环境配置一样,如果已经配置过,可以跳
- ORB-SLAM系列算法演进
极客范儿
SLAMVI-SLAMORB-SLAMORB-SLAMORBFAST
ORB-SLAM算法是特征点法的代表,当前最新发展的ORB-SLAM3已经将相机模型抽象化,适用范围非常广,虽然ORB-SLAM在算法上的创新并不是很丰富,但是它在工程上的创新确实让人耳目一新,也能更好的为AR、机器人的算法实现落地。而且它的代码简明扼要,每个模块非常清晰,对初学者也十分友好,是入坑视觉SLAM的不二法门。下面将介绍ORB-SLAM系列算法演进。文章目录一、PTAM算法二、ORB-
- 快速下载TUM数据集
奈流云何
SLAMTUM数据集
TUM数据集下载慢怎么办最近在学习ORB-SLAM不可避免的要用到TUM数据集。然而在国内下载国外的东西,这速度令人满意(个鬼)。忽然想起百度网盘的离线下载功能,试了试相当好用。TUM数据集下载地址第一步点击下载第二步复制网址第三步打开百度网盘点击离线下载第四步粘贴下载链接保存到网盘第五步愉快下载(建议开百度云会员)(没有去X宝租个号,关键词云舟舟,2元嗨翻天)2020年更新:辣鸡某云现在离线下载
- ORB特征点提取算法试验
半昧白兰地
视觉SLAM学习
前阵子推进毕设,通过各种教材、论文和博客的调研,总算对视觉SLAM有了一个比较宏观的了解,摘录归纳了许多特征提取和跟踪的算法,最后初步方案决定为对ORB-SLAM展开研究。赶紧花时间去补习了一下C++,用了半天配置完了OpenCV3.4的环境,又用了近一整天时间快速翻完了毛星云的《OpenCV3编程入门》,跑了跑里面的例程,发现简直友好度爆炸。这每一章的内容,不管是图像滤波也好,图像分割也好,图像
- ORB-SLAM2学习笔记7之System主类和多线程
ZPILOTE
SLAM#V-SLAMslamvslamORB-SLAM2System类多线程
文章目录0引言1整体框架1.1整体流程2System主类2.1成员函数2.2成员变量3多线程3.1ORB-SLAM2中的多线程3.2加锁0引言ORB-SLAM2是一种基于特征的视觉SLAM(SimultaneousLocalizationandMapping)系统,它能够从单个、双目或RBGD相机的输入中实时地同时定位相机的位置,并构建环境的三维地图。ORB-SLAM2是在ORB-SLAM的基础上
- ORB-SLAM2论文拜读:An Open-Source SLAM System form Monocular, Stereo, and RGB-D Cameras
ZPILOTE
参考文献SLAMslamvslamORB-SLAM2ORB-SLAM2论文论文翻译
文章目录摘要1引言2相关工作2.1双目SLAM2.2RGB-DSLAM3ORB-SLAM23.1单目、近处立体和远处立体关键点3.2系统启动3.3单目和双目约束下的光束优化法(BA)3.4回环检测和全局BA3.5关键帧的插入3.6定位模式4评价4.1KITTI数据集4.2EuRoC数据集4.3TUMRGB-D数据集4.4运算耗时结果(Timingresults)5结论摘要本文提出了ORB-SLAM
- 实测 (三)NVIDIA Xavier NX + D435i / 奥比中光Astrapro 相机+ ORB-SLAM 2 + 3 稠密回环建图
全日制一起混
NX实测c++ubuntu嵌入式硬件推荐算法计算机视觉
开发环境:NX+Ubuntu18.04+ROS-melodic接着上篇,使用奥比中光的Astrapro相机(乐视三合一相机)orb-slam2稠密回环建图依然先放上效果图:三、NX+Astrapro相机+orb-slam2稠密回环建图3.1安装奥比中光Astrapro的SDK(1)安装依赖sudoapt-getinstalllibudev-devsudoapt-getinstalllibopena
- 实测 (四)NVIDIA Xavier NX + D435i / 奥比中光Astrapro 相机+ ORB-SLAM 2 + 3 稠密回环建图
全日制一起混
NX实测c++ubuntu计算机视觉
来了!接着上篇,开始orb-slam3的稠密回环建图实测(奥比中光Astrapro相机)老样子,先上效果图:开发环境:NX+Ubuntu18.04+ROS-melodic四、NX+Astrapro相机+orb-slam3稠密回环建图首先小白老师分享的ORB-SLAM3的可回环的稠密地图版本,具体在这篇博客,下载但是却没有相关的具体实现教程,这里我们先使用奥比中光Astrapro两款相机进行配置实现
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/