The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m)
. This is equivalent to ax≡1 (mod m)
.
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
3 3 11 4 12 5 13
4 Not Exist
8
分析:题目让求a相对于m的逆元 x
从题目可以知道 gcd(a,m)=1;
扩展欧几里德 a*x+m*y=gcd(a,m)
求出x
AC代码:
#include
#include
long long kzgcd(long long a,long long b,long long &x,long long &y)
{
if(b==0)
{
x=1,y=0;
return a;
}
long long ans=kzgcd(b,a%b,x,y);
long long t=x;
x=y;
y=t-a/b*y;
return ans;
}
long long solve(long long a,long long b)
{
long long x,y;
long long gcd=kzgcd(a,b,x,y);
if(1%gcd)
return -1;
b/=gcd;
if(b<0) b=-b;
long long ans=x%b;
if(ans<=0)
ans+=b;
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
long long a,m;
scanf("%lld%lld",&a,&m);
long long ans=solve(a,m);
if(ans==-1)
printf("Not Exist\n");
else
printf("%lld\n",ans);
}
}