- 数论基础知识(整除,质数,合数,质因数,取模,同余)
acmakb
蓝桥杯c++数论算法
整除整除的定义:设a,b∈Z,a≠0。如果q∈Z,使得b=aq,那么就说b可被a整除,记作a|b。若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),即b∣a,读作"b整除a”或“a能被b整除”,注意这两句话的前后主语。举例:15/5=0说明15可以被5整除,记作5|15常用性质:如果a整除b,并且b整除c,那么a整除c若a|b,b|c则>a|c20/5=44/2
- C语言-算法-数论基础
SpongeG
C语言-算法算法c语言开发语言
【模板】快速幂题目描述给你三个整数a,b,pa,b,pa,b,p,求ab mod pa^b\bmodpabmodp。输入格式输入只有一行三个整数,分别代表a,b,pa,b,pa,b,p。输出格式输出一行一个字符串a^bmodp=s,其中a,b,pa,b,pa,b,p分别为题目给定的值,sss为运算结果。样例#1样例输入#12109样例输出#12^10mod9=7提示样例解释210=10242^{1
- 【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】
不是AI
C语言密码学算法web安全密码学c语言
实验三、数论基础(下)一、实验内容1、中国剩余定理(ChineseRemainderTheorem)(1)、算法原理m1,m2,…mk是一组两两互素的正整数,且M=m1·m2·…·mk为它们的乘积,则如下的同余方程组:x==a1(modm1)x==a2(modm2)…x==ak(modmk)对于模M有唯一的解x=(M·e1·a1/m1+M·e2·a2/m2+…+M·ek·ak/mk)(modM)其
- 【网络安全】【密码学】【北京航空航天大学】实验二、数论基础(中)【C语言和Java实现】
不是AI
C语言Java密码学密码学c语言java
实验二、数论基础(中)一、实验内容1、扩展欧几里得算法(ExtendedEuclid’sAlgorithm)(1)、算法原理已知整数a,b,扩展的欧几里得算法可以在求得a,b的最大公约数的同时,找到一对整数x,y,使得a,b,x,y满足如下等式:ax+by=d=gcd(a,b),其中gcd(a,b)为a和b的最大公约数。(2)、算法流程本算法的大致流程如下图所示:(3)算法的代码实现(C语言)#i
- 【网络安全】【密码学】【北京航空航天大学】实验一、数论基础(上)【C语言和Java实现】
不是AI
C语言密码学Javaweb安全密码学c语言
实验一、数论基础(上)一、实验目的1、通过本次实验,熟悉相关的编程环境,为后续的实验做好铺垫;2、回顾数论学科中的重要基本算法,并加深对其的理解,为本学期密码学理论及实验课程打下良好的基础。二、实验原理数论主要研究的是整数的运算及性质,许多常用的加密算法都用到了数论知识。三、实验环境本次实验的实验环境为Dev-C++5.11,以及IntelliJIDEAIDE。四、实验内容1、厄拉多塞筛算法(Si
- 洛谷普及组P1044栈,题目讲解(无数论基础,纯打表找规律)
Colinnian
深度优先算法题目讲解
[NOIP2003普及组]栈-洛谷我先写了个打表的代码,写了一个小时,o(╥﹏╥)o只能说我真不擅长dfs。intn;std::unordered_mapmap;voiddfs(std::vector&a,intstep,std::stackp,std::strings){if(step==n+1){while(!p.empty()){s.push_back('0'+p.top());p.pop(
- 初等数论基础
satadriver
数学算法抽象代数
欧拉函数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉函数\phi(x),其中x是正整数,函数的值是从0到x-1之间与x互为质数的个数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉定理aϕ(m)=1(modm),其中m和a是大于1的正整数a^{\phi(m)}=1(mod\quadm),其中m和a是大于1的正整数aϕ(m)=1
- 【考研—密码学数论基础】环、群、域、多项式运算
GoesM
考研--密码学与网络安全c++数论考研密码学抽象代数
注:下述笔记根据学习通公开课程《数学的思维方式与创新》,部分内容并非严谨数学定义,个人理解居多。注2:第一遍学的时候理解得太片面了,面试被问到了才意识到理解得有问题,特此重新更正Pre:理解一些问题群?环?域?这些概念是在聊什么?它们都相当于是一种特殊的集合。抽象代数中的加法?乘法?本质是:定义新运算。它其实不同于我们平时知道的乘法和加法,但在逻辑上有一些相似之处。单位元:在集合中作乘法运算,类似
- 数论基础之模运算
wxhyaoshunyutang
抽象代数
数论基础之模运算这篇罗列一下模运算的定义,即最基本的运算定理首先回顾一下整除的性质a是b的倍数=b整除a=b|a定理:对任意整数a和b,b≠0b\neq0b=0,唯一存在一对整数q和r,使得0≤\leq≤r≤\leq≤|b|,a=qb+r整数的基本性质性质1.若a|b,b|c,则a|c性质2.若a|b,则a|bc性质3.若a|b,a|c,则a|b+c性质4.若a整除b1,b2…bn,则a|Λ1\
- 数论基础模板-----数论成长之路
gzr2018
算法竞赛
最大公约数gcdgcd(f[n],f[m])=f[gcd(n,m)]intgcd(inta,intb)//a大于b{returna%b==0?b:gcd(b,a%b);}ViewCode最小公倍数LcmintLcm(inta,intb){returna/gcd(a,b)*b;}ViewCodeint输入输出挂inlineintread(){intx=0,f=1;charc=getchar();wh
- 约数——数论算法
miracle1114
数论算法c++
数论基础知识本篇文章主要讲述数论中基础算法约数部分的内容提示:本篇文章代码参考ACWing文章目录数论基础知识一、约数是什么?二、约数的相关算法1.枚举出某一个数的所有约数2.求约数的个数3.最大公约数4.约数之和!!:以下是本篇文章正文内容,下面案例可供参考一、约数是什么?约数,又叫因数。整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,
- rsa加密算法_CTF现代密码之RSA之数论
weixin_39817176
rsa加密算法rsa加密算法实现rsa算法pythonrsa算法代码凯撒密码加密算法python
亲爱的,关注我吧10/30文章共计2345个词预计阅读8分钟如果有伙伴发现这篇文章小编之前发过不要惊讶哦是对文章做了一些更正呀来和我一起阅读吧前言:在CTF的密码题目中,RSA以其加密算法之多且应用之广泛,所以在比赛中是最常见的题目。学习密码学并不难,但首先得打好数学基础,并在攻破密码的学习之路上持之以恒。今天我们就来打开RSA加密世界的第一扇门《数论》。数论基础:1.素数2.公约数与公倍数3.欧
- 数论基础(III):新兴学科及前沿数学。
luj_1768
算法经验分享数据库c语言开发语言
近现代的数论研究,一般是与高能物理、天体物理、生物医药、材料工程、计算工程,相互影响、相互促进、同步进化的。其理论基础大多根植于香浓底论、七桥问题。高数、高代、线数,的学科建设与学科融合是当前数学研修的又一主流方向。这与社会对计算方法、解算方案的需求有关。计算工具的发展,为群论、集合概率论、统计分布理论、的应用和发展,提供了条件、带来了机遇。信息论、人工智能、元宇宙,则是当前学科发展的综合学科和前
- 算法比赛备赛笔记
开longlong了吗?
算法笔记
个人觉得,对于计算机专业的大学生来说,算法竞赛应该是性价比最高的比赛了。除了icpc和ccpc这两个比较难拿国奖之外,其他的比赛获奖难度并不大,比如蓝桥杯、天梯赛、睿抗,认真学习一年算法,水个国奖完全没问题。本篇博客是我在一年多的学习和比赛中所做的笔记,记录的内容都是我认为在比赛中高频次出现的算法,而且除了线段树之外都是比较基础的算法。应该会不断更新吧。一.算法1.数论基础循环小数转换为分数转换方
- 数论基础。
luj_1768
算法数据库c语言经验分享开发语言
许多学习软件的同学都非常希望自己能成为算法大师,事实上,所有的算法都源于数论。这里,将简单的介绍一些数论有关的知识:对几大基础数列的解读是最基本、最关键的数论修道。素数分析、质因数分解、和式分组(二元一次方程的整数解有关的分析方案)。素数分析、密码学。素数分析、关组分析。素数分析、杂论。超越数分析、PI,EE分析。根式分析(二次根式,三次根式)。一元多次方程的解分析,一元二次方程的解分析。一元高次
- 密码学:数论基础
PlyTools
符号表符号说明衍生示例有理数,即,整数集,即,表示正整数集,表示负整数集自然数集,即也表示正整数集实数集,即,同余于模有限群的阶,的最大公约数欧拉函数群生成元环由生成的主理想域表示模n形成的有限域,为素数1模运算(ModularArithmetic)1.1模约化(ModularReduction)如果我们用代替,称为此过程称为模约化,而代表了除以的余数1.2同余式(Congruences)对于,如
- RSA加密原理详解,以及RSA中的数论基础
Demonslzh
网络安全算法密码学安全
文章目录1.RSA加密算法介绍2.RSA密钥生成3.RSA加密和解密4.RSA的安全性5.涉及到的数论基础5.1.模的逆元5.1.1.扩展欧几里得算法计算模逆元5.1.2.费马小定理计算模逆元5.2欧拉函数5.3离散对数离散对数问题6.RSA加密的安全性1.RSA加密算法介绍RSA加密是一种非对称加密算法,由罗纳德·李维斯特(RonRivest)、阿迪·萨莫尔(AdiShamir)和伦纳德·阿德曼
- CSDN竞赛7期题解
昂昂累世士
其它容斥原理dfsgcd
总结这次竞赛的题目质量相对之前竞赛来说是有明显进步的,由两道经典面试题加上两道中等难度题目构成。前两道的受众可能是初学算法的同学吧,对于学算法的同学来说,前两道题没有在五分钟内AC都是不合格的。当然,偷懒这么久没学算法的我,也花了数倍的时间才ac前两道。T3主要考察问题的分析能力,实现不难。T4考察数论基础,容斥原理和GCD,注意下细节也是不难ac的。题目列表1.奇偶排序题目描述给定一个存放整数的
- 【数论基础】
萌新,菜
c++图论算法
1.质数质数筛(埃氏筛+线性筛)//线性筛#include#includeusingnamespacestd;constintN=1000010;intprimes[N],cnt;boolst[N];voidget_primes(intn){for(inti=2;i>n;get_primes(n);cout#include#include#includeusingnamespacestd;type
- 密码学基础学习
宫jx
首先声明符号:C密文,P明文,K密钥,EK加密,DK解密。一。传统密码学。基本是移位和变换,比如凯撒密码,维吉尼亚密码,hill密码等。(1)凯撒密码,密钥空间是26。加密C=(p+k)mod26。解密P=(c-k)mod26。(2)单表置换。n个元素有n!个置换(3)维吉尼亚密码。公式太复杂不想写。。。二。数论基础知识,有限域的运算,加法是按位异或,乘法比较有意思。高级加密标准(AES)就是依赖
- 【ctf-3】数论基础+Crypto初步
三金C_C
密码学算法
本周继续学习了公钥密码学的数论基础,最近事情实在太多了只能海绵里挤时间了。当然关于数论这个部分还是非常重要的,不仅实在密码学部分还在是在算法设计部分都至关重要的,本人也还没有深入接触过python,php,对于一些脚本处理大多还是用的C++,这一点日后需要提高,很多关于密码的解法大多是用python的。同时本周也进行了Cyrpto的题目练习,确实让我大开了眼界,认识了很多加密方式,对于此可以看总结
- 【蓝桥杯Java组】数论基础—素数筛、最大公约数、最小公倍数
Mymel_晗
蓝桥杯蓝桥杯leetcode算法Java数论
前言:一学就会的小技巧(一):前缀和一学就会的小技巧(二):差分一学就会的小技巧(三):快速幂一学就会的小技巧(四):龟速乘一学就会的小技巧(五):矩阵快速幂一学就会的小技巧(六):矩阵快速幂的应用省赛真题—K倍区间(前缀和,数学,思维)☕☕在解决编程题时,除了要对算法本身有足够的了解,往往还需要掌握一些基础数论。☕☕常用的数论有:最大公约数最小公倍数判断两数互质素数筛下面逐一给出代码模板~1.
- 【笔记】莫比乌斯反演(前置知识)
inferior_hjx
笔记c++算法
文章目录前言前置知识模定义性质整除定义性质同余定义性质逆元定义性质积性函数定义常见的积性函数证明欧拉函数为积性函数例1:欧拉函数线性筛例2:莫比乌斯函数线性筛前言由于文章正文太长,不得不分几篇博客。本篇为数论基础内容,学习过数论的可以跳过。最近学了莫比乌斯反演和一点狄利克雷卷积,感觉很难,也是看了很多博客才有点明,写一篇博客帮助自己理解。由于数论大多基于正整数讨论,故除特殊说明外,本文所有变量都为
- 数论
weixin_30381317
c/c++数据结构与算法
目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b.筛选法
- 除等数论
じ☆夏妮国婷☆じ
算法除等数论
除等数论目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b
- 初等数论
YinJianxiang
数论
转自:http://cppblog.com/menjitianya/archive/2015/12/02/212395.html一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗
- “kuangbin带你飞”专题计划——专题十四:数论基础
I_have_a_world
#ACM_数论#ACM_专项训练数论基础数论kuangbin带你飞
写在前面1.目前还没啥写的。开始时间:2021-05-13(其实博客上看得到该博客创建时间的)2.上一个专题刷的是网络流(博客总结),属于第一次接触。本来想的是一周特别高效,然后一周略划水,结果是五一期间高效,工作日有课略划水。还好,每个题都写了博客,收获很多3.这个专题,我想应该每个题都涉及了不一样的知识吧。也建议每个题都写博客4.写个感受?有与高四刷书的感觉了,激动,期待,轻松辛苦,有时候一本
- 数学基础知识回顾(二):集合论
Ali forever
图论拓扑学5G信息与通信
集合论前言一、数论基础与计数基础1.幂集2.唯一析因定理(算术基本定理)3.贝祖定理4.同余定理5.鸽巢原理(抽屉原理)1.几个例子2.一般性鸽巢原理二、二元关系1.关系及其表示1.笛卡尔积2.二元关系的定义3.二元关系的一些概念2.关系的性质3.关系的闭包4.等价关系与集合的划分三、函数与映射1.单射,满射与双射1.定义2.与关系矩阵和关系图的关系3.函数的复合4.几种常见函数5.函数的势四、偏
- 【ctf】Crypto初步基础概要
三金C_C
密码学ctf学习周报pythoncrypto网络安全密码学
在CTF界中,真正的Crypto高手只要一张纸一只笔以及Python环境就可以称霸全场了。(虽然是玩笑话但却是事实)当然了,密码学是整个网络安全的基础,不管你是否参加ctf类的比赛,对于密码的常识也都需要掌握,希望接下来的内容对你有所收获,也希望可以进行学习和交流,另外欢迎各位师傅的指点,鄙人不才,还请各位师傅多包涵。一个好的算法手或者数论基础极强的人经过编程培养定是优秀的Crypto选手,所以算
- 密码学-数论基础
一颗菜籽
笔记算法网络安全
数论基础整除性和带余除法整除性:b整除a:b|a、b是a的一个因子性质:a|1,a=+(-)1带余除法:a=qn+r,|r|=b>0anda%b!=0)]模运算a除以n所得的余数为a模n,记为amodn,n成为模数,ex:余数与模数同号同余:(amodn)=(bmodn)称为a和b是模n同余,记为a=b(modn)性质:相减的两个数可被模数整除,则这两个数同余交换律传递性模算数运算1、2、3可以这
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出