- 数据结构 第6章 图(一轮习题总结)
ITS_Oaij
408:数据机构(习题知识点)数据结构算法c语言
数据结构第6章图6.1图的基本概念6.2图的存储及基本操作6.3图的遍历6.4图的应用6.1图的基本概念(2411)6.2图的存储及基本操作(112131516)6.3图的遍历(23516)6.4图的应用(14568910111314192425283334)6.1图的基本概念T2一个有个顶点和n条边的图,一定是有环的。T4无向图的连通分量=极大连通子图图的遍历:每个结点只访问一次;若为非连通图,
- 邓俊辉数据结构与算法学习笔记-第五章
xiaodidadada
数据结构与算法
文章目录树aa1树a2应用a3有根树a4有序树a5路径a6连通图无环图a7深度层次b在计算机中表示b1树的表示b2父节点b3孩子节点b4父亲孩子表示法b5长子兄弟表示法c二叉树c1二叉树概述c2真二叉树c3描述多叉树d二叉树d1BinNode类d2BinNode接口d3BinTree类d4高度更新d5节点插入e相关算法e1-1先序遍历转化策略e1-2遍历规则e1-3递归实现e1-4迭代实现e1-5
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- 代码随想录算法训练营day64 | 98. 所有可达路径
sunflowers11
代码随想录二刷算法
图论理论基础1、图的种类整体上一般分为有向图和无向图。加权有向图,就是图中边是有权值的,加权无向图也是同理。2、度无向图中有几条边连接该节点,该节点就有几度在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。3、连通性在图中表示节点的连通情况,我们称之为连通性连通图和强连通图在无向图中,任何两个节点都是可以到达的,我们称之为连通图。如果有节点不能到达其他节点,
- Day44 | 图论理论基础 98. 所有可达路径
086小包字
图论算法数据结构java
语言Java图论理论基础整体上一般分为有向图和无向图有向图就是有箭头的,无向图就是没有方向的。有几条连线就是有几个度。在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。在无向图中,任何两个节点都是可以到达的,我们称之为连通图。在有向图中,任何两个节点是可以相互到达的,我们称之为强连通图。98.所有可达路径98.所有可达路径题目给定一个有n个节点的有向无环图,
- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 【数据结构】图
rygttm
数据结构数据结构算法
文章目录图1.图的两种存储结构2.图的两种遍历方式3.最小生成树的两种算法(无向连通图一定有最小生成树)4.单源最短路径的两种算法5.多源最短路径图1.图的两种存储结构1.图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存
- 史上最系统的的竞赛图讲解:学透竞赛图看这一篇就够了!
准确、系统、简洁地讲算法
算法图论
文章目录定义性质一、兰道定理(竞赛图的判定)比分序列:将每个点的出度从小到大排序的序列。定理内容:定理证明拓展二、竞赛图缩点后拓扑序成链状,拓扑序小的点向所有拓扑序比它大的点连边。(1)与SCC,拓扑序相关推论:1.根据成链状容易发现当不存在位置i满足以下条件,图为强连通图。2.在同一个SCC中在比分序列上是一个区间,根据比分序列可以完成拓扑排序。(无需建图)(2)与三元环和n>=3元环相关a.竞
- 图论
whynotybb
基于DFS求无向连通图的环对于每一个连通分量,如果无环则只能是树,即:边数=结点数-1只要有一个满足边数>结点数-1原图就有环,环的个数为:边的个数-顶点个数+1;publicMap>getRings(){//用来记录结点访问状态的数组,0----还未访问;1-----正在进行访问2------------已访问完visit=newint[nVerts];//记录当前结点已经访问过的结点,并记录了
- 最小生成树 —— Prim 和 Kruskal 算法
CharlesWu123
数据结构与算法数据结构与算法最小生成树PrimKruskal
最小生成树定义生成树:连通图包含全部顶点的一个极小连通子图最小生成树:对于带权无向连通图G=(V,E),G的所有生成树当中边的权值之和最小的生成树为G的最小生成树(MST)性质最小生成树不一定唯一,即最小生成树的树形不一定唯一。当带权无向连通图G的各边权值不等时或G只有节点数减1条边时,MST唯一最小生成树的权值是唯一的,且是唯一的最小生成树的边数为顶点数减1算法Prim算法适用于稠密图,Krus
- 数据结构与算法--PTA第六章习题
Java之弟
数据结构与算法算法
数据结构与算法--PTA第六章习题答案一、判断无向连通图至少有一个顶点的度为1。F用一维数组G[]存储有4个顶点的无向图如下:TG[]={0,1,0,1,1,0,0,0,1,0}则顶点2和顶点0之间是有边的。若图G有环,则G不存在拓扑排序序列。T无向连通图所有顶点的度之和为偶数。T无向连通图边数一定大于顶点个数减1。F用邻接表法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。F用邻接矩
- Kruskal算法
青年之家
algorithms算法
Kruskal算法问题描述算法简析代码问题描述有一张nnn个顶点、mmm条边的无向图,且是连通图,求最小生成树。算法简析KruskalKruskalKruskal是一种求最小生成树的算法。设该图为G=(V,E)G=(V,E)G=(V,E)。最小生成树即所求为GT=(VT,ET)G_T=(V_T,E_T)GT=(VT,ET),因为图是连通的,所以最小生成树会覆盖所有的顶点,即V==VTV==V_TV
- 系统架构21 - 统一建模语言UML(下)
银龙丶裁决
软考系统架构系统架构uml
UML图UML中的图分类作用视图用例视图逻辑视图进程视图实现视图部署视图UML中的图“图”是一组元素的图形表示,大多数情况下把图画成顶点(代表事物)和弧(代表关系)的连通图。为了对系统进行可视化,可以从不同的角度画图,这样图是对系统的投影。分类UML2.0提供了13种图:类图、对象图、用例图、序列图、通信图、状态图、活动图、构件图、部署图、组合结构图、包图、交互概览图和计时图。其中,序列图、通信图
- 【图论】基环树
Texcavator
图论图论
基环树其实并不是树,是指有n个点n条边的图,我们知道n个点n-1条边的连通图是树,再加一条边就会形成一个环,所以基环树中一定有一个环,长下面这样:由基环树可以引申出基环内向树和基环外向树基环内向树如下,特点是每个点的出度为1基环外向树如下,特点是每个点的入度为1下面放点题,做到相关题目随时更新基环树+组合数学CF1454ENumberofSimplePaths先记录环上的点,每个环上的点引出去的子
- 22:算法--指定源点下的最小生成树
raindayinrain
2.1.数据结构与算法图最小生成树算法
指定源点下的最小生成树性质算法输入:图G指定的源点输入限制:图G须为无向连通图算法目标:求取一个权重之和最小的边的集合,通过此边集合,G中任意两个节点均可以相互到达。接口设计templateclassMinGenerateTree{public:classNode;typenametypedefDataStruct::GraphStruct::GraphInnerGraph;typenametyp
- Java数据结构——连通性算法+prim算法+kruskal算法
NoBug.己千之
Java数据结构java
文章目录一、图的连通性(一)、定义(二)、方法(三)、Java代码1.图的连通性检验2.源码3.输出样例二、最小生成树(一)、定义(二)、求法(三)、图与网(四)、普里姆算法1.定义2.Java代码3.输出样例(五)、克鲁斯卡尔算法1.定义2.Java代码3.输出样例一、图的连通性(一)、定义请读一遍:对无向图进行遍历时,对于连通图,仅需从图中任一顶点出发,进行深度优先搜索或广度优先搜索,便可访问
- 图的遍历算法——DFS、BFS原理及实现
W24-
数据结构数据结构队列dfs算法
文章目录图的遍历定义如何判别某些顶点被访问过深度优先搜索(Depth-First-Search)深度优先搜索的递归实现深度优先搜索的非递归实现广度优先搜索(Breadth-First-Search)广度优先搜索实现图的遍历定义图的遍历(搜索):从图的某一顶点出发,对图中所有顶点访问一次且仅访问一次。访问:抽象操作,可以是对节点进行的各种处理。连通图与非连通图都可以。但是图结构具有复杂性,不像线性表
- 图论——连通性
Albert.Jw
搜索图论
割点:1.无向图2.删去这个点及其所连边后,图不再联通点双连通图:1.无向图2.没有割点(删去任意一个点图仍联通)点双联通分量:无向图G中所有子图G’如果G’1.是点双联通子图2.不是其他点双联通子图的真子集,则G’是G的极大点双联通子图,也称点双联通分量。桥(割边):1.无向图2.删此边(不删其连着的点),剩下的图不再联通边双连通图:1.无向图2.删任意一边,剩下的图仍联通边双联通分量:无向图G
- 图(数据结构期末复习3)
一只程序媛li
数据结构复习数据结构
图的分类:有向图,无向图连通图,非连通图连通图分为强连通(有向并且形成一个环)和弱连通(有向并且连成一串但是不是一个环)图的存储用邻接矩阵存储有向图或者无向图#includeusingnamespacestd;#defineINFINITY32767//权值最大值#defineMVNUM100//最多顶点个数#defineERROR0typedefcharVertexType;//顶点的类型typ
- 数据结构--最小生成树
嘉月末
c/c++数据结构图论
最小生成树在含有n个顶点的连通网中选择n-1条边,构成一个极小连通图,并使这个连通图的边上的权值之和最小,这就是最小生成树。构造下图的最小生成树Prim(普利姆)算法从图中的任意节点出发,选择子树中节点与图中其余节点之间的最小权重边来生成子树,直到得到一棵图G的生成树为止。(以点为基础开始)时间复杂度O(n^2)普利姆算法构造最小生成树的过程Kruskal(克鲁斯卡尔)算法先构造一个只含n个顶点的
- 牛客练习赛113
温存~
算法
A.小红的基环树A-小红的基环树_牛客练习赛113(nowcoder.com)题目:定义基环树为n个节点、n条边的、没有自环和重边的无向连通图。定义一个图的直径是任意两点最短路的最大值。小红想知道,n个节点构成的所有基环树中,最小的直径是多少?思路:由题意观察可以知道,当n等于3时,最小的直径就是1,而当n大于等于4时,直径等于2.代码:#includeusingnamespacestd;intm
- 并查集与图
风影66666
面试c++动态规划贪心算法数据结构广度优先
并查集与图一、并查集概念实现原理代码实现查找根节点合并两颗树判断是否是同一棵树树的数量二、图的基本概念定义分类完全图顶点的度连通图三、图的存储结构分类邻接表邻接表的结构代码实现邻接矩阵代码实现四、图的遍历方式广度优先深度优先五、最小生成树概念Kruskal算法原理代码实现Prim算法原理代码实现六、单源最短路径概念Dijkstra原理代码实现缺陷BellmanFord原理代码实现七、多源最短路径概
- 数据结构之图
忆梦九洲
数据结构图无环图与有向无环图按存储路径方向分类按存储结构分类
图图(Graph)是比树还要难以理解和学习的“多对多”数据结构,可以认为树也是图的一种。图的知识点众多,按照存储路径的方向分,可分为无向图和有向图,按照图的存储结构分,可分为完全图与有向完全图、连通图与强连通图、连通分量与强连通分量、无环图与有向无环图,其涉及的算法则包括克鲁斯卡尔算法、普里姆算法、迪杰斯特拉算法和弗洛伊德算法等。如下图所示为图的分类。与表和树相同,图虽然有“多对多”的逻辑关系,但
- Tarjan 算法思想求强连通分量及求割点模板(超详细图解)
harry1213812138
图论算法算法tarjan强连通分量割点割边
割点定义在一个无向图中,如果有一个顶点,删除这个顶点及其相关联的边后,图的连通分量增多,就称该点是割点,该点构成的集合就是割点集合。简单来说就是去掉该点后其所在的连通图不再连通,则该点称为割点。若去掉某条边后,该图不再连通,则该边称为桥或割边。若在图G中(如下图),删除uv这条边后,图的连通分量增多,则u和v点称为割点,uv这条边称为桥或割边。显然,有割点的图不是哈密尔顿图。Tarjan算法求强连
- 超级详细的Tarjan算法
ivysister
acm题tarjan最大连通分量
有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(stronglyconnectedcomponents)。下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
- Tarjan 算法超级详解
键盘上的艺术家w
#算法-图论Tarjan算法超级详解
首先我们引入定义:1、有向图G中,以顶点v为起点的弧的数目称为v的出度,记做deg+(v);以顶点v为终点的弧的数目称为v的入度,记做deg-(v)。2、如果在有向图G中,有一条有向道路,则v称为u可达的,或者说,从u可达v。3、如果有向图G的任意两个顶点都互相可达,则称图G是强连通图,如果有向图G存在两顶点u和v使得u不能到v,或者v不能到u,则称图G是强非连通图。4、如果有向图G不是强连通图,
- 力扣刷题系列——BFS和DFS
今天也要学习哦
力扣刷题系列java算法
BFS与DFS相关算法题目录BFS与DFS相关算法题BFS1.二进制矩阵中的最短路径2.完全平方数3.单词接龙DFS1.岛屿的最大面积2.岛屿数量3.岛屿的周长4.朋友圈5.被围绕的区域6.太平洋大西洋水流问题BFS广度优先搜索(也称宽度优先搜索,缩写BFS,以下采用广度来描述)是连通图的一种遍历算法这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采
- floyd算法求最短路径
菜鸡小陈
算法c++
给定一个n个点m条边构成的无重边和自环的无向连通图。点的编号为1∼n。请问:从1到n的最短距离。去掉k条边后,从1到n的最短距离。输入格式第一行包含整数T,表示共有T组测试数据。每组数据第一行包含三个整数n,m,k。接下来m行,每行包含三个整数x,y,z,表示点x和点y之间存在一条长度为z的边。最后一行包含k个空格隔开的整数,表示去掉的边的编号。所有边按输入顺序从1到m编号。输出格式每组数据输出占
- 【数据结构】图 常见题型汇总
_mika_
【数据结构笔记】数据结构
数据结构图定义无向图的连通分量是指无向图中的极大连通子图。图的遍历是指从图中顶点出发,每个顶点只能被访问一次,如果图不是连通则从某一顶点出发无法访问到其他全部结点。无向连通图的所有顶点度之和为偶数邻接矩阵行对应入度,列对应出度,顶点的度为对应入度+出度。习题题型11.一个有28条边的非连通无向图至少有()个结点假设一种情况一个完全图+一个结点设结点个数为n+1有n(n-1)/2=28求出n为7所以
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><