【矩阵论】02——线性空间——基、维数与坐标

本系列文章由Titus_1996 原创,转载请注明出处。  

文章链接:https://blog.csdn.net/Titus_1996/article/details/82835889

本系列文章使用的教材为《矩阵论》(第二版),杨明,刘先忠编,华中科技大学出版社。


基的定义

在线性空间V中,若存在n个元素

    α1,α2,......,αn

满足:

  1. α1,α2,......,αn线性无关

  2. V中任意元素α都可用α1,α2,......,αn线性表示。

那么,α1,α2,......,αn就称为线性空间的一组基,n称为线性空间V的维数。

 

其实线性空间的基,就是求V的极大无关组。其不是唯一的。因此,求基的步骤为:

  1. 求一组线性无关的向量组

  2. 证明此无关组是极大的,也就是可以线性表示V中任意一个元素。


定理

n维线性空间中,任意n个线性无关的向量构成的向量组,都是空间的基。


坐标的定义

在线性空间Vn(F)中,设{α1,α2,......,αn}是一组基,β为V中的一个元素,{α1,α2,......,αn,β}线性相关,故β可由α1,α2,......,αn唯一线性表示,因此有

【矩阵论】02——线性空间——基、维数与坐标_第1张图片

则称数x1,x2,......,xn是β在基{α1,α2,......,αn}下的坐标


注意

  • 不论Vn(F)为什么具体的线性空间,只要取定了一组基,Vn(F)中向量在该基下的坐标都是线性空间Fn中的向量。由于这一特点,可以用数量矩阵和Rn中的向量来研究一般的线性空间中有关问题的基础。

  • 一般同一向量在不同基下的坐标是不同的。


同构(详细了解)

加法保持不变,数乘保持不变。

坐标关系建立了Vn(F)和Fn的一一对应关系σ。σ满足

【矩阵论】02——线性空间——基、维数与坐标_第2张图片

由此,我们可以得出映射关系

Vn,F,+,。)→(Fn,F,+,.

线性空间→数域

 

数域F上,任意一个n维线性空间Vn(F)都和n维线性空间Fn同构。

 

这种同构关系给人们解决未知空间的问题提出了思想方法,可以利用已知的去推出未知。要做的事就是,人们期望的坐标确定了,是已知的,那么要取得什么样的坐标呢?这就要找到映射关系σ。有以下定理:

基于Vn(F)和Fn这种一一对应的关系保持线性关系不变,如果不计较向量的具体形式,仅就线性关系而言,Vn(F)中的问题就可以转到熟悉的方法和已经建立的理论来解决了。

 

你可能感兴趣的:(矩阵论)