三维薄板样条,用于三维模型变形(c++)

        刚接触变形算法,其实不想碰三维变形算法,菜鸡一个,但是导师一直让试试,那就试试,事实证明薄板样条并不特别适用于古建筑点云变形,第一次写文章只为记录一下我曾经学过,不然按照本人的记忆力,基本都忘完。

       薄板样条一般用于图像匹配,二维图像处理无敌,三维真的不是那么太强,起码基本只能二维变形,将三维视为二维,忽略第三维信息,用二维图像提取轮廓,在用相似三角形进行变形,着实凑巧,这里说的是 基于轮廓线与薄板样条的三维自动化建模方法 毕竟论文种可以完全避免同时三个维度的变形,咱也不知道说的对不对。经过这些天的死磕研究,自己写的三维薄板样条的代码总是并不是特别好的变形。简单的圆柱体、长方体、正方体。提供控制点和形变坐标就可以变形,然而使用一些点云的时候,最后通过薄板样条计算出的点各式各样,五花八门。

三维薄板样条,用于三维模型变形(c++)_第1张图片

三维薄板样条,用于三维模型变形(c++)_第2张图片

 三维薄板样条,用于三维模型变形(c++)_第3张图片

 失败的就不放了,丢人现眼。本来不想碰拉普拉斯的,看来还得去自己编。

static double tps_base_func(double r)//用于计算基函数的r
{
	if (r == 0.0)
		return 0.0;
	else
		return r*r * log(r*r);
}
static void calc_tps()
{
	// You We need at least 3 points to define a plane
	if (control_points.size() < 3)
		return;

	unsigned p = control_points.size();

	// Allocate the matrix and vector
	matrix mtx_l(p + 4, p + 4);//L矩阵  
	matrix mtx_v(p + 4, 3);//包含了v 和  o
	matrix mtx_orig_k(p, p);//K矩阵
	matrixw(p, 4);
							
	double a = 0.0;
	for (unsigned i = 0; i < p; ++i)
	{
		for (unsigned j = i + 1; j < p; ++j)
		{
		
			mtx_l(i, j) = mtx_l(j, i) =
				mtx_orig_k(i, j) = mtx_orig_k(j, i) = tps_base_func((control_points[i] - control_points[j]).len()); //tps_base_func(elen);//???//Uij传给上下对角
			//a += elen * 2; // same for upper & lower tri
		}
	}
	a /= (double)(p*p);//a=a/p^2
					   // Fill the rest of L
	for (unsigned i = 0; i < p; ++i)
	{
		// diagonal: reqularization parameters (lambda * a^2)对角线重新量化参数
		mtx_l(i, i) = mtx_orig_k(i, i) = 
			regularization * (a*a);//变形程度 目前为0

								   // P (p x 3, upper right) 已改 4*P 增加Y
		mtx_l(i, p + 0) = 1.0;
		mtx_l(i, p + 1) = control_points[i].x;

		mtx_l(i, p + 2) = control_points[i].y;
		mtx_l(i, p + 3) = control_points[i].z;
	//fill P up right and down left
		mtx_l(p + 0, i) = 1.0;
		mtx_l(p + 1, i) = control_points[i].x;
		mtx_l(p + 2, i) = control_points[i].y;
		mtx_l(p + 3, i) = control_points[i].z;

	}
	// O (3 x 3, lower right)  改4*4
	for (unsigned i = p; i < p + 4; ++i)
	{
		for (unsigned j = p; j < p + 4; ++j)
		{
			mtx_l(i, j) = 0.0;
		}
	}
	// Fill the right hand vector V   maybe is matrix
	for (unsigned j = 0; j < 3; ++j)
	{
		for (int i = 0; i < 4; i++)
		{
			mtx_v(p + i, j) = 0;
		}
	}
	for (size_t i = 0; i < TransformationPoint.size(); i++)
	{
		
				mtx_v(i, 0) = TransformationPoint[i].x;
				mtx_v(i, 1) = TransformationPoint[i].y;
				mtx_v(i, 2) = TransformationPoint[i].z;
	}
	cout << "--------------------L矩阵-----------------" << endl;
	for (unsigned i = 0; i < p+4; i++)
	{
		for (unsigned j = 0; j < p+4; j++)
		{
			cout << mtx_l(i, j) << "\t";
		}
		cout << endl;
	}
	cout << " ----------------v矩阵-----------------------" << endl;
	for (int i = 0; i < p+4; i++)
	{
		for (int j = 0; j < 3; j++)
		{
			cout << mtx_v(i, j) << "\t";

		}
		cout << endl;
	}

	if (0!= LU_Solve(mtx_l, mtx_v)&&1== LU_Solve(mtx_l, mtx_v))//0为成功  1为奇异矩阵 2 行数不对等
	{
		puts("Singular matrix! Aborting.");
		cout << "计算不成功,奇异矩阵" << endl;
		exit(1);
		
	}
	cout << "---------------------------系数----------------------------------" << endl;
	for (int i = 0; i < p + 4; i++)
	{
		for (int j = 0; j < 3; j++)
		{
			cout << mtx_v(i, j) << "\t";
		}
		cout << endl;
	}
	//WxU  WyU  WzU权重分配
	float WxU = 0;
	float WyU = 0;
	float WzU = 0;
	
	for (int i = 0; i < EnteredPoint.size(); i++)
	{
		double x= mtx_v(p + 0, 0) + mtx_v(p + 1, 0)*EnteredPoint[i].x
			+ mtx_v(p + 2, 0)*EnteredPoint[i].y + mtx_v(p + 3, 0)*EnteredPoint[i].z;
		double y= mtx_v(p + 0, 1) + mtx_v(p + 1, 1)*EnteredPoint[i].x
			+ mtx_v(p + 2, 1)*EnteredPoint[i].y + mtx_v(p + 3, 1)*EnteredPoint[i].z;
		double z= mtx_v(p + 0, 2) + mtx_v(p + 1, 2)*EnteredPoint[i].x
			+ mtx_v(p + 2, 2)*EnteredPoint[i].y + mtx_v(p + 3, 2)*EnteredPoint[i].z;
		
		for (int j = 0; j < p; j++)//权重系数很小
		{
			 WxU += mtx_v(j, 0) * tps_base_func((EnteredPoint[i] - control_points[j]).len());
			 WyU += mtx_v(j, 1) * tps_base_func((EnteredPoint[i] - control_points[j]).len());
			 WzU += mtx_v(j, 2) * tps_base_func((EnteredPoint[i] - control_points[j]).len());
		}
		//cout <<"v    "<< x+WxU << "   " << y + WyU << " " << z + WzU << "" << endl;
		//cout <<  WxU << " " <<  WyU << "  " <<  WzU << endl;
		std::cout << "计算第" << i << "次" << "   " << "还剩" << EnteredPoint.size() - i << "待计算" << std::endl;
		cout <<" v  "< be = prod(prod >(trans(w), mtx_orig_k), w);
	bending_energy = be(0, 0);
	cout << "弯曲能量为=  " << bending_energy << endl;
	
}
void ReadControlPoint()
{
	ifstream infile("E:\\ExperimentalData\\expData\\test\\gd.txt");
	float a, b, c;
	while (infile >> a >> b >> c)
	{
		control_points.push_back(Vec(a, b, c));
	}

}
void ReadTransformationPoint()
{
	ifstream tranfile("E:\\ExperimentalData\\expData\\test\\mv.txt");//C:\\Users\\Administrator\\Desktop
																   //E:\\ExperimentalData\\expData\\test\\zhenshi700.txt
	float a, b, c,N1,N2,N3,N4,N5,N6;
	while (tranfile>>a>>b>>c)//tranfile >> a>> b >> c>>N1>>N2>>N3>>N4>>N5>>N6
	{
		TransformationPoint.push_back(Vec(a, b, c));
	}
}
void reaeAllPoints()
{
	        //c_obj 定义一个网格对象
	int mask;     //定义mask
				  //注意your filePath不能有中文路径
	vcg::tri::io::ImporterOBJ::Open(m_obj, "E:\\ExperimentalData\\expData\\test\\524.obj", mask);
	//为每个点计算法线并归一化
	vcg::tri::RequirePerVertexNormal(m_obj);
	vcg::tri::UpdateNormal::PerVertexNormalized(m_obj);
	std::vector  &vs = m_obj.vert;
	std::vector &es = m_obj.edge;
	std::vector &fs = m_obj.face;
	for (auto i = 0; i < m_obj.vert.size(); ++i)
	{
		MyVertex v = vs[i];
		EnteredPoint.push_back(Vec(v.P().X(), v.P().Y(), v.P().Z()));
	}
}
void OutputPoints()
{
	MyVertex v;
	for (int i = 0; i < EnteredPoint.size(); i++)
	{
		v.P().X() = AfterDeformPoint[i].x;
		v.P().Y() = AfterDeformPoint[i].y;
		v.P().Z() = AfterDeformPoint[i].z;
		c_obj.vert.push_back(v);
		//cout << "x=  "<< AfterDeformPoint[i].x << "y=  " << AfterDeformPoint[i].y << "z= " << AfterDeformPoint[i].z << endl;
	}
	
	/*for (size_t i = 0; i < c_obj.vert.size(); i++)
	{
		cout <<"v"<<"  "<< c_obj.vert[i].P().X() << "  " << c_obj.vert[i].P().Y() << "   " << c_obj.vert[i].P().Z()<< endl;
	}*/
	c_obj.edge = m_obj.edge;
	c_obj.face = m_obj.face;
	//vcg::tri::BuildMeshFromCoordVectorIndexVector(c_obj, c_obj.vert, c_obj.face);
	//vcg::tri::Octahedron(c_obj);
	vcg::tri::io::ExporterOBJ::Save(c_obj, "C:\\Users\\Administrator\\Desktop\\c_obj.obj", 0);
}
void outDataToTxt()
{
	ofstream location_out;
	///*/注意路径前面不能有!空格否则会读不进去坐标//
	location_out.open("E:\\ExperimentalData\\expData\\test\\location_out.txt", std::ios::out | std::ios::app);  //以写入和在文件末尾添加的方式打开.txt文件,没有的话就创建该文件。
	if (!location_out.is_open())
		cout << "open file error" << endl;

	for (int i = 0; i < EnteredPoint.size(); i++)
	{
		location_out << "v " << AfterDeformPoint[i].x << " " << AfterDeformPoint[i].y << " " << AfterDeformPoint[i].z << endl;
	}
	location_out.close();
	
}

int main()
{
	
	
	reaeAllPoints();
	ReadControlPoint();
	ReadTransformationPoint();
	
	
	calc_tps();
	outDataToTxt();
	system("pause");
	return 0;

}

代码水平有限,也是自己摸索。真实点云作变形,计算出的模型顶点坐标会是特别大的数简直离谱。懂的大佬有没有知道古建筑三维变形最好用什么变形算法~难道只有拉普拉斯吗?

你可能感兴趣的:(几何学)