- 第四章 图论(4):SPFA求负环、差分约束、LCA
路哞哞
算法笔记图论算法LCA
目录一、SPFA求负环1.0SPFA判断负环1.1虫洞1.2观光奶牛(spfa&&01分数规划)1.3单词环二、差分约束2.1糖果2.2区间2.3排队布局2.4雇佣收银员2.5再卖菜三、最近公共祖先(LCA)3.1祖孙询问(倍增法)3.2距离(Tarjan算法)3.3次小生成树3.4暗之连锁一、SPFA求负环一般会和01分数规划结合负环:一个环且环上所有权值之和小于零负环对最短路径的影响:如果在求
- 备战蓝桥杯--01分数规划
cocoack
蓝桥杯c++算法
何为规划?即选择的方案何为01?即是否选择其实01分数规划也只是二分答案的延申。让我们直接看题目吧:下面为分析:首先,我们会想直接对每一个v/c,然后排序。实际上,选单个性价比大的不一定总价值/总花费大。于是我们二分总价值/总花费,然后判断。那如何判断呢?我们进行化简于是我们维护好这值即可。下面为AC代码:
- 网络流问题总结
cqbzcsq
图论总结网络流费用流上下界网络流最小割最小割树
一、纯最大流问题这种一般遇到得比较少,除非是板题二、最大流最小割问题这种问题一般是把全集分为两类数,求分开这个集合(或是选出某个子集)的最小代价是多少。有关技巧:利用容量为INF的边来干涉决策,如最大权闭合子图将所选集合的点的邻接边权求和分析,如最大密度子图判定S,T集合时必须用dfs相关算法:分数规划易错点:cnt初始时没有赋为1(很容易浪费时间)在写gap优化时一定要单独注明总点数sz总点数计
- 【01分数规划】ABC324F
lamentropetion
二分动态规划图论算法
[ABC324F]BeautifulPath-洛谷思路首先看到这个形式很容易想到01分数规划,即去二分答案,然后就是转化成是否存在一个路径使得sigmab-mid*sigmac>=0显然只需要改变一下边权,跑一遍最长路即可#includeusingnamespacestd;#definelllonglong#definedoublelongdoubleconstintN=200200;constd
- 观光奶牛 (01分数规划、负环)
AE_
算法图论
01分数规划问题:类似于观光奶牛这个题中的,求的路径上的点权值和与边权值和的商最大最小。当前问题的推到如下:该问题其实可以用二分图来解决,在不断的二分答案中获取符合条件的最大值。然后问题就转化为如何是否存在和为mid的环。判断路径上点权和与边权和的商,是否大于mid;因为比权和为正,因此:移项得:因为他们单项是对应的,所以两个求和可以进行合并,如下:至此可以发现,存在环上路径得权值为正数即可,即是
- 三分/01分数规划
_fairyland
二分算法
三分最小球覆盖2018南京D三分套三分套三分constexprintN=105;structnode{intx,y,z;}a[N];intn;doubleroad(doublex1,doubley1,doublez1,doublex2,doubley2,doublez2){returnsqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2));}do
- 【图论 进阶】差分约束 学习笔记
yaohua小猴子
算法进阶-学习笔记图论学习算法c++csp
差分约束意在理解数学与图论直接的关系。文章目录0x00差分约束的使用场景0x10差分约束工作原理0x20差分约束的拓展0x210/1分数规划0x22Tarjan优化差分约束0x30差分约束的模板P59600x40例题0x41P1993小K的农场0x42P2294[HNOI2005]狡猾的商人0x43P2868[USACO07DEC]SightseeingCowsG0x44P3275[SCOI201
- AcWing算法提高课----图论 笔记 (SPFA找负环)
彡倾灬染|
算法学习笔记AcWing
SPFA找负环知识点讲解例题1:AcWing904.虫洞01分数规划例题2:AcWing361.观光奶牛例题3:AcWing1165.单词环知识点讲解负环:在一个有向(无向)图当中,存在一个环路,使得这个环的边权之和小于0求负环常见方法(基于SPFA、抽屉原理):统计每个点入队的次数,如果某个点入队n次,则说明存在负环(等价于bellman-Ford)统计当前每个点的最短路中所包含的边数,如果某点
- ACM模板_axiomofchoice
gman344
技术
语法c++java暴力算法离散化01分数规划任务规划|Livshits-Kladov定理分治逆序数×二维偏序最大空矩阵|悬线法搜索舞蹈链×DLX启发式算法动态规划多重背包最长不降子序列×LIS数位dp换根dp斜率优化四边形优化计算几何structof向量平面几何基本操作判断两条线段是否相交othersof平面几何基本操作二维凸包旋转卡壳最大空矩形|扫描法平面最近点对|分治最小圆覆盖|随机增量法st
- 分数问题善用移项:0902T2
Qres821
算法分数规划二分
其实就是分数规划,但不完全是。对于求∑pili∑li\Large\frac{\sump_il_i}{\suml_i}∑li∑pili在限定条件下的最大值,此类问题可以考虑二分答案并移项。∑pili∑li≥k\Large\frac{\sump_il_i}{\suml_i}\gek∑li∑pili≥k∑pili≥k∑li\Large\sump_il_i\gek\suml_i∑pili≥k∑li∑(pi
- [USACO07DEC] Sightseeing Cows G(分数规划+负权回路判定)
cqbzcsq
算法数学SPFA二分C++
题面[USACO07DEC]SightseeingCowsG-洛谷题目大意:给出一张n点m边的带点权带边权的有向图求一个回路使得路上点权和除以边权和最大(最优比率回路)题解首先一定仔细读题,是回路不是路径由于回路上所有点权只能获取一次,但边权会获取很多次,所以最优解一定是简单回路(无重复边)然后我们发现是让一个分数最大,于是我们可以考虑分数规划二分假设二分的商为mid,判断是否存在一个满足点边权和
- 分数规划(二分)
Ch714254994
c++算法
链接:登录—专业IT笔试面试备考平台_牛客网来源:牛客网题目描述小咪是一个土豪手办狂魔,这次他去了一家店,发现了好多好多(n个)手办,但他是一个很怪的人,每次只想买k个手办,而且他要让他花的每一分钱都物超所值,即:买下来的东西的总价值/总花费=max。请你来看看,他会买哪些东西吧。输入描述:多组数据。第一行一个整数T,为数据组数。接下来有T组数据。对于每组数据,第一行两个正整数n,k,如题。接下来
- 第三章 图论 No.6负环之01分数规划与特殊建图方式
.SacaJawea
AcWing算法提高课课程记录图论
文章目录裸题:904.虫洞01分数规划:361.观光奶牛特殊建图与01分数规划+trick:1165.单词环裸题:904.虫洞904.虫洞-AcWing题库//虫洞是负权且单向边,道路是正权且双向边,题目较裸,判断有无负环即可#include#includeusingnamespacestd;constintN=510,M=6010;inth[N],e[M],ne[M],w[M],idx;intn
- 0/1分数规划+0/1背包模型(p4377)
Knight840
数论洛谷动态规划算法c++
发现又是一道求max的0/1分数规划的题目,与普通的0/1分数规划不同的是,这题加了一个限制条件,总重量不低于W,我们只要把重量超过w看成等于w,这题不就是一个0/1背包问题。对于0/1分数规划问题:(3条消息)0/1分数规划(poj2976)_Knight840的博客-CSDN博客对于0/1背包问题:dp[j]表示重量为j的最大权值,由于每个物品只有一个,且dp[j]是由比j小的值确定,如果从小
- 0/1分数规划(poj2976)
Knight840
数论pojc++算法
输入数列{}和{},从两个数列中去掉k对,选择n-k对,求的最大值,取1或0分别表示选或者不选第i对数。0usingnamespacestd;intn,k;structnode{inta;intb;doubley;}h[1005];booltmp(nodea,nodeb){returna.y>b.y;}boolcheck(doublem){for(inti=0;i=0)return1;elsere
- 01分数规划 易懂+例题讲解 (c++)
取名真难.
c++数学建模开发语言
01分数规划:01即取还是不取,分数即所求型式为,规划就是选取最好的方案。一般情况题目给出n个物品,再给出每个物品的价值以及物重,选取k个物品,问你在所有可能选取的方案中,最大的单位价值为多少(单位价值为选取的k个物品的总价值和总重量的比值)。我们选择采用二分法,进行判断。我们要求的是选取的k个物品的总价值和总重量的比值最大,最终求得是。所以我们在可取的区间内每次取区间中值mid,判断是否符合,符
- 【Noip】考纲
weixin_30767835
转自他人博客基础算法贪心√、枚举√、分治√、二分√、倍增√、*构造√、高精√、模拟√图论最短路(dijkstra、spfa、floyd),差分约束最小生成树(kruskal、prim)并查集(扩展域)拓扑排序二分图染色,二分图匹配tarjan找scc、桥、割点,缩点分数规划树树上倍增(LCA)树的直径、树的重心dfs序*树链剖分数论gcd、lcm√埃氏筛法√exgcd,求解同余方程、逆元√快速幂√
- NOIP考纲
安一825
信息奥赛计算机基础知识
转自他人博客基础算法贪心√、枚举√、分治√、二分√、倍增√、*构造√、高精√、模拟√图论最短路(dijkstra、spfa、floyd),差分约束最小生成树(kruskal、prim)并查集(扩展域)拓扑排序二分图染色,*二分图匹配tarjan找scc、桥、割点,缩点*分数规划树树上倍增(LCA)树的直径、树的重心dfs序*树链剖分数论gcd、lcm√埃氏筛法√exgcd,求解同余方程、逆元√快速
- 01分数规划
长剑凌清秋
01分数规划
01分数规划2019.9.6学习资料[Algorithm]01分数规划ByPerSeAwe01分数规划入门ByCaptainLi01分数规划问题相关算法与题目讲解(二分法与Dinkelbach算法)Bytianxiang971016【算法微解读】浅谈01分数规划Bydawnstar0/1分数规划详解ByJudge_Cheung简介01分数规划问题简单说来就是给你一堆物品,每件物品有两个属性a,b。
- 【算法微解读】浅谈01分数规划
weixin_30952103
数据结构与算法
浅谈01分数规划所谓01分数规划,看到这个名字,可能会想到01背包,其实长得差不多。这个算法就是要求“性价比”最高的解。sum(v)/sum(w)最高的解。定义我们给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每个物品只有选和不选的两种方案,求一个选择的方案使得R=sigma(a[i]x[i])/sigma(b[i]x[i]),也就
- 01分数规划学习笔记
weixin_30732825
数据结构与算法
浅谈01分数规划所谓01分数规划,看到这个名字,可能会想到01背包,其实长得差不多。这个算法就是要求“性价比”最高的解。sum(v)/sum(w)最高的解。定义我们给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每个物品只有选和不选的两种方案,求一个选择的方案使得R=sigma(a[i]x[i])/sigma(b[i]x[i]),也就
- 浅谈0/1分数规划
ZBoWing
二分二分答案
题面见POJ2676这就是一道0/1分数规划的模板题,其最经典的做法就是二分答案,然后check一下就可以了。PS:注意double类型精度问题。那么直接看代码吧:#include#definemaxn1111#defineINF0x7fffffff#defineeps1e-15#definepiacos(-1.0)#definee2.718281828459#definemod(int)1e9+
- 浅谈01分数规划-代码改变世界
Phantom_stars
01分数规划01分数规划
浅谈01分数规划所谓01分数规划,看到这个名字,可能会想到01背包,其实长得差不多。这个算法就是要求“性价比”最高的解。sum(v)/sum(w)最高的解。定义我们给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价。如果选取i,定义x[i]=1否则x[i]=0。每个物品只有选和不选的两种方案,求一个选择的方案使得R=sigma(a[i]*x[i])/sigma(b[i]*x[i]),
- 浅谈01分数规划
零衣贰
学习笔记算法c++
对于形如求使得∑ai∑bi\frac{\suma_i}{\sumb_i}∑bi∑ai最值的问题,称为010101分数规划(选择一些aaa和bbb使得其某两属性之和的商取到最值)此题一般解法为二分答案求出最大最小值假如我们要求最大的∑ai∑bi\frac{\suma_i}{\sumb_i}∑bi∑aians=∑ai∑bians=\frac{\suma_i}{\sumb_i}ans=∑bi∑ai也就是
- 负环与01分数规划——观光奶牛
北岭山脚鼠鼠
#spfa扩展——负环与差分约束算法蓝桥杯c++
01分数规划,简单的来说,就是有一些二元组(si,pi),从中选取一些二元组,使得∑si/∑pi最大(最小)。这种题一类通用的解法就是,我们假设x=∑si/∑pi的最大(小)值,那么就有x*∑pi=∑si,即∑si-x*∑pi=0。也就是说,当某一个值x满足上述式子的时候,它就是要求的值。我们可以想到枚举……不过再想想,这个可以二分答案。所以我们直接二分答案,当上述式子>0,说明答案小了,0成立的
- poj Desert King ---- 最小比率生成树(0/1 分数规划)
liuzhexuan1
题意简化如下:给定nnn个村庄的坐标(n=ans\displaystyle\frac{\sum_{i=0}^mx_ip_i}{\sum_{i=0}^mx_il_i}>=ans∑i=0mxili∑i=0mxipi>=ans,即从mmm条边中选出任意n−1n-1n−1条边,一定会有∑i=0mxipi∑i=0mxili>=ans\displaystyle\frac{\sum_{i=0}^mx_ip_i}
- poj2976(01分数规划)
Stayaccept
奇思妙想系列
链接:点击打开链接题意;有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值代码:#include#include#include#include#include#includeusingnamespacestd;constintINF=0x3f3f3f3f;intn,m;doublea[1005],b[1005],c[1005];intjudge(doublem
- [SCOI2018]游泳池(计算几何+分数规划+最大权闭合子图)
anzi3457
数据结构与算法
题目链接https://www.luogu.org/problemnew/show/U56187注:题面参考了网上的其他博客,并非原题题面,因此数据范围可能有误。数据为原创数据。题解其实就是许多板子码到一起。首先对于边缘上的任意一点\(u\),假设离它最远的顶点为\(A\),那么我们称点\(u\)位于顶点\(A\)的控制范围之中。我们考虑在没有石雕的情况下怎么求出每个顶点的控制范围。对于除顶点\(
- 01分数规划 总结报告
Jianzs_426
其他算法ACM
01分数规划参考:http://www.cnblogs.com/perseawe/archive/2012/05/03/01fsgh.html胡伯涛:《最小割模型在信息学竞赛中的应用》(强力推荐)定义分数规划是一类问题。而01分数规划是分数规划的一个特例。分数规划的一般形式:λ=f(x)=a(x)b(x),(x∈S),求λ最大或者最小。其中,解向量x在解空间S内,a(x)与b(x)都是连续的实值函
- 第二周总结
心夏心冬
每周(→∞)记录?
文章目录内容概括涉及算法题数相关算法模拟洛谷OJP1538迎春舞会之数字舞蹈01分数规划[牛客网暑期ACM多校训练营(第五场)](https://www.nowcoder.com/acm/contest/143)A思维[牛客网暑期ACM多校训练营(第五场)](https://www.nowcoder.com/acm/contest/143)J概率论枚举unsigned[牛客网暑期ACM多校训练营(
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s