- 数论基础知识(整除,质数,合数,质因数,取模,同余)
acmakb
蓝桥杯c++数论算法
整除整除的定义:设a,b∈Z,a≠0。如果q∈Z,使得b=aq,那么就说b可被a整除,记作a|b。若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),即b∣a,读作"b整除a”或“a能被b整除”,注意这两句话的前后主语。举例:15/5=0说明15可以被5整除,记作5|15常用性质:如果a整除b,并且b整除c,那么a整除c若a|b,b|c则>a|c20/5=44/2
- C语言-算法-数论基础
SpongeG
C语言-算法算法c语言开发语言
【模板】快速幂题目描述给你三个整数a,b,pa,b,pa,b,p,求ab mod pa^b\bmodpabmodp。输入格式输入只有一行三个整数,分别代表a,b,pa,b,pa,b,p。输出格式输出一行一个字符串a^bmodp=s,其中a,b,pa,b,pa,b,p分别为题目给定的值,sss为运算结果。样例#1样例输入#12109样例输出#12^10mod9=7提示样例解释210=10242^{1
- 【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】
不是AI
C语言密码学算法web安全密码学c语言
实验三、数论基础(下)一、实验内容1、中国剩余定理(ChineseRemainderTheorem)(1)、算法原理m1,m2,…mk是一组两两互素的正整数,且M=m1·m2·…·mk为它们的乘积,则如下的同余方程组:x==a1(modm1)x==a2(modm2)…x==ak(modmk)对于模M有唯一的解x=(M·e1·a1/m1+M·e2·a2/m2+…+M·ek·ak/mk)(modM)其
- 【网络安全】【密码学】【北京航空航天大学】实验二、数论基础(中)【C语言和Java实现】
不是AI
C语言Java密码学密码学c语言java
实验二、数论基础(中)一、实验内容1、扩展欧几里得算法(ExtendedEuclid’sAlgorithm)(1)、算法原理已知整数a,b,扩展的欧几里得算法可以在求得a,b的最大公约数的同时,找到一对整数x,y,使得a,b,x,y满足如下等式:ax+by=d=gcd(a,b),其中gcd(a,b)为a和b的最大公约数。(2)、算法流程本算法的大致流程如下图所示:(3)算法的代码实现(C语言)#i
- 【网络安全】【密码学】【北京航空航天大学】实验一、数论基础(上)【C语言和Java实现】
不是AI
C语言密码学Javaweb安全密码学c语言
实验一、数论基础(上)一、实验目的1、通过本次实验,熟悉相关的编程环境,为后续的实验做好铺垫;2、回顾数论学科中的重要基本算法,并加深对其的理解,为本学期密码学理论及实验课程打下良好的基础。二、实验原理数论主要研究的是整数的运算及性质,许多常用的加密算法都用到了数论知识。三、实验环境本次实验的实验环境为Dev-C++5.11,以及IntelliJIDEAIDE。四、实验内容1、厄拉多塞筛算法(Si
- 洛谷普及组P1044栈,题目讲解(无数论基础,纯打表找规律)
Colinnian
深度优先算法题目讲解
[NOIP2003普及组]栈-洛谷我先写了个打表的代码,写了一个小时,o(╥﹏╥)o只能说我真不擅长dfs。intn;std::unordered_mapmap;voiddfs(std::vector&a,intstep,std::stackp,std::strings){if(step==n+1){while(!p.empty()){s.push_back('0'+p.top());p.pop(
- 初等数论基础
satadriver
数学算法抽象代数
欧拉函数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉函数\phi(x),其中x是正整数,函数的值是从0到x-1之间与x互为质数的个数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉定理aϕ(m)=1(modm),其中m和a是大于1的正整数a^{\phi(m)}=1(mod\quadm),其中m和a是大于1的正整数aϕ(m)=1
- 【考研—密码学数论基础】环、群、域、多项式运算
GoesM
考研--密码学与网络安全c++数论考研密码学抽象代数
注:下述笔记根据学习通公开课程《数学的思维方式与创新》,部分内容并非严谨数学定义,个人理解居多。注2:第一遍学的时候理解得太片面了,面试被问到了才意识到理解得有问题,特此重新更正Pre:理解一些问题群?环?域?这些概念是在聊什么?它们都相当于是一种特殊的集合。抽象代数中的加法?乘法?本质是:定义新运算。它其实不同于我们平时知道的乘法和加法,但在逻辑上有一些相似之处。单位元:在集合中作乘法运算,类似
- 数论基础之模运算
wxhyaoshunyutang
抽象代数
数论基础之模运算这篇罗列一下模运算的定义,即最基本的运算定理首先回顾一下整除的性质a是b的倍数=b整除a=b|a定理:对任意整数a和b,b≠0b\neq0b=0,唯一存在一对整数q和r,使得0≤\leq≤r≤\leq≤|b|,a=qb+r整数的基本性质性质1.若a|b,b|c,则a|c性质2.若a|b,则a|bc性质3.若a|b,a|c,则a|b+c性质4.若a整除b1,b2…bn,则a|Λ1\
- 数论基础模板-----数论成长之路
gzr2018
算法竞赛
最大公约数gcdgcd(f[n],f[m])=f[gcd(n,m)]intgcd(inta,intb)//a大于b{returna%b==0?b:gcd(b,a%b);}ViewCode最小公倍数LcmintLcm(inta,intb){returna/gcd(a,b)*b;}ViewCodeint输入输出挂inlineintread(){intx=0,f=1;charc=getchar();wh
- 约数——数论算法
miracle1114
数论算法c++
数论基础知识本篇文章主要讲述数论中基础算法约数部分的内容提示:本篇文章代码参考ACWing文章目录数论基础知识一、约数是什么?二、约数的相关算法1.枚举出某一个数的所有约数2.求约数的个数3.最大公约数4.约数之和!!:以下是本篇文章正文内容,下面案例可供参考一、约数是什么?约数,又叫因数。整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,
- rsa加密算法_CTF现代密码之RSA之数论
weixin_39817176
rsa加密算法rsa加密算法实现rsa算法pythonrsa算法代码凯撒密码加密算法python
亲爱的,关注我吧10/30文章共计2345个词预计阅读8分钟如果有伙伴发现这篇文章小编之前发过不要惊讶哦是对文章做了一些更正呀来和我一起阅读吧前言:在CTF的密码题目中,RSA以其加密算法之多且应用之广泛,所以在比赛中是最常见的题目。学习密码学并不难,但首先得打好数学基础,并在攻破密码的学习之路上持之以恒。今天我们就来打开RSA加密世界的第一扇门《数论》。数论基础:1.素数2.公约数与公倍数3.欧
- 数论基础(III):新兴学科及前沿数学。
luj_1768
算法经验分享数据库c语言开发语言
近现代的数论研究,一般是与高能物理、天体物理、生物医药、材料工程、计算工程,相互影响、相互促进、同步进化的。其理论基础大多根植于香浓底论、七桥问题。高数、高代、线数,的学科建设与学科融合是当前数学研修的又一主流方向。这与社会对计算方法、解算方案的需求有关。计算工具的发展,为群论、集合概率论、统计分布理论、的应用和发展,提供了条件、带来了机遇。信息论、人工智能、元宇宙,则是当前学科发展的综合学科和前
- 算法比赛备赛笔记
开longlong了吗?
算法笔记
个人觉得,对于计算机专业的大学生来说,算法竞赛应该是性价比最高的比赛了。除了icpc和ccpc这两个比较难拿国奖之外,其他的比赛获奖难度并不大,比如蓝桥杯、天梯赛、睿抗,认真学习一年算法,水个国奖完全没问题。本篇博客是我在一年多的学习和比赛中所做的笔记,记录的内容都是我认为在比赛中高频次出现的算法,而且除了线段树之外都是比较基础的算法。应该会不断更新吧。一.算法1.数论基础循环小数转换为分数转换方
- 数论基础。
luj_1768
算法数据库c语言经验分享开发语言
许多学习软件的同学都非常希望自己能成为算法大师,事实上,所有的算法都源于数论。这里,将简单的介绍一些数论有关的知识:对几大基础数列的解读是最基本、最关键的数论修道。素数分析、质因数分解、和式分组(二元一次方程的整数解有关的分析方案)。素数分析、密码学。素数分析、关组分析。素数分析、杂论。超越数分析、PI,EE分析。根式分析(二次根式,三次根式)。一元多次方程的解分析,一元二次方程的解分析。一元高次
- 密码学:数论基础
PlyTools
符号表符号说明衍生示例有理数,即,整数集,即,表示正整数集,表示负整数集自然数集,即也表示正整数集实数集,即,同余于模有限群的阶,的最大公约数欧拉函数群生成元环由生成的主理想域表示模n形成的有限域,为素数1模运算(ModularArithmetic)1.1模约化(ModularReduction)如果我们用代替,称为此过程称为模约化,而代表了除以的余数1.2同余式(Congruences)对于,如
- RSA加密原理详解,以及RSA中的数论基础
Demonslzh
网络安全算法密码学安全
文章目录1.RSA加密算法介绍2.RSA密钥生成3.RSA加密和解密4.RSA的安全性5.涉及到的数论基础5.1.模的逆元5.1.1.扩展欧几里得算法计算模逆元5.1.2.费马小定理计算模逆元5.2欧拉函数5.3离散对数离散对数问题6.RSA加密的安全性1.RSA加密算法介绍RSA加密是一种非对称加密算法,由罗纳德·李维斯特(RonRivest)、阿迪·萨莫尔(AdiShamir)和伦纳德·阿德曼
- CSDN竞赛7期题解
昂昂累世士
其它容斥原理dfsgcd
总结这次竞赛的题目质量相对之前竞赛来说是有明显进步的,由两道经典面试题加上两道中等难度题目构成。前两道的受众可能是初学算法的同学吧,对于学算法的同学来说,前两道题没有在五分钟内AC都是不合格的。当然,偷懒这么久没学算法的我,也花了数倍的时间才ac前两道。T3主要考察问题的分析能力,实现不难。T4考察数论基础,容斥原理和GCD,注意下细节也是不难ac的。题目列表1.奇偶排序题目描述给定一个存放整数的
- 【数论基础】
萌新,菜
c++图论算法
1.质数质数筛(埃氏筛+线性筛)//线性筛#include#includeusingnamespacestd;constintN=1000010;intprimes[N],cnt;boolst[N];voidget_primes(intn){for(inti=2;i>n;get_primes(n);cout#include#include#includeusingnamespacestd;type
- 密码学基础学习
宫jx
首先声明符号:C密文,P明文,K密钥,EK加密,DK解密。一。传统密码学。基本是移位和变换,比如凯撒密码,维吉尼亚密码,hill密码等。(1)凯撒密码,密钥空间是26。加密C=(p+k)mod26。解密P=(c-k)mod26。(2)单表置换。n个元素有n!个置换(3)维吉尼亚密码。公式太复杂不想写。。。二。数论基础知识,有限域的运算,加法是按位异或,乘法比较有意思。高级加密标准(AES)就是依赖
- 【ctf-3】数论基础+Crypto初步
三金C_C
密码学算法
本周继续学习了公钥密码学的数论基础,最近事情实在太多了只能海绵里挤时间了。当然关于数论这个部分还是非常重要的,不仅实在密码学部分还在是在算法设计部分都至关重要的,本人也还没有深入接触过python,php,对于一些脚本处理大多还是用的C++,这一点日后需要提高,很多关于密码的解法大多是用python的。同时本周也进行了Cyrpto的题目练习,确实让我大开了眼界,认识了很多加密方式,对于此可以看总结
- 【蓝桥杯Java组】数论基础—素数筛、最大公约数、最小公倍数
Mymel_晗
蓝桥杯蓝桥杯leetcode算法Java数论
前言:一学就会的小技巧(一):前缀和一学就会的小技巧(二):差分一学就会的小技巧(三):快速幂一学就会的小技巧(四):龟速乘一学就会的小技巧(五):矩阵快速幂一学就会的小技巧(六):矩阵快速幂的应用省赛真题—K倍区间(前缀和,数学,思维)☕☕在解决编程题时,除了要对算法本身有足够的了解,往往还需要掌握一些基础数论。☕☕常用的数论有:最大公约数最小公倍数判断两数互质素数筛下面逐一给出代码模板~1.
- 【笔记】莫比乌斯反演(前置知识)
inferior_hjx
笔记c++算法
文章目录前言前置知识模定义性质整除定义性质同余定义性质逆元定义性质积性函数定义常见的积性函数证明欧拉函数为积性函数例1:欧拉函数线性筛例2:莫比乌斯函数线性筛前言由于文章正文太长,不得不分几篇博客。本篇为数论基础内容,学习过数论的可以跳过。最近学了莫比乌斯反演和一点狄利克雷卷积,感觉很难,也是看了很多博客才有点明,写一篇博客帮助自己理解。由于数论大多基于正整数讨论,故除特殊说明外,本文所有变量都为
- 数论
weixin_30381317
c/c++数据结构与算法
目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b.筛选法
- 除等数论
じ☆夏妮国婷☆じ
算法除等数论
除等数论目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b
- 初等数论
YinJianxiang
数论
转自:http://cppblog.com/menjitianya/archive/2015/12/02/212395.html一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗
- “kuangbin带你飞”专题计划——专题十四:数论基础
I_have_a_world
#ACM_数论#ACM_专项训练数论基础数论kuangbin带你飞
写在前面1.目前还没啥写的。开始时间:2021-05-13(其实博客上看得到该博客创建时间的)2.上一个专题刷的是网络流(博客总结),属于第一次接触。本来想的是一周特别高效,然后一周略划水,结果是五一期间高效,工作日有课略划水。还好,每个题都写了博客,收获很多3.这个专题,我想应该每个题都涉及了不一样的知识吧。也建议每个题都写博客4.写个感受?有与高四刷书的感觉了,激动,期待,轻松辛苦,有时候一本
- 数学基础知识回顾(二):集合论
Ali forever
图论拓扑学5G信息与通信
集合论前言一、数论基础与计数基础1.幂集2.唯一析因定理(算术基本定理)3.贝祖定理4.同余定理5.鸽巢原理(抽屉原理)1.几个例子2.一般性鸽巢原理二、二元关系1.关系及其表示1.笛卡尔积2.二元关系的定义3.二元关系的一些概念2.关系的性质3.关系的闭包4.等价关系与集合的划分三、函数与映射1.单射,满射与双射1.定义2.与关系矩阵和关系图的关系3.函数的复合4.几种常见函数5.函数的势四、偏
- 【ctf】Crypto初步基础概要
三金C_C
密码学ctf学习周报pythoncrypto网络安全密码学
在CTF界中,真正的Crypto高手只要一张纸一只笔以及Python环境就可以称霸全场了。(虽然是玩笑话但却是事实)当然了,密码学是整个网络安全的基础,不管你是否参加ctf类的比赛,对于密码的常识也都需要掌握,希望接下来的内容对你有所收获,也希望可以进行学习和交流,另外欢迎各位师傅的指点,鄙人不才,还请各位师傅多包涵。一个好的算法手或者数论基础极强的人经过编程培养定是优秀的Crypto选手,所以算
- 密码学-数论基础
一颗菜籽
笔记算法网络安全
数论基础整除性和带余除法整除性:b整除a:b|a、b是a的一个因子性质:a|1,a=+(-)1带余除法:a=qn+r,|r|=b>0anda%b!=0)]模运算a除以n所得的余数为a模n,记为amodn,n成为模数,ex:余数与模数同号同余:(amodn)=(bmodn)称为a和b是模n同余,记为a=b(modn)性质:相减的两个数可被模数整除,则这两个数同余交换律传递性模算数运算1、2、3可以这
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地