第一,二类斯特林数

转自:点击打开链接   

第一类Stirling数 s(p,k)

    

s(p,k)的一个的组合学解释是:将p个物体排成k个非空循环排列的方法数。

 

s(p,k)的递推公式: s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1) ,1<=k<=p-1

边界条件:s(p,0)=0 s(p,p)=1  


递推关系的说明:

考虑第p个物品,p可以单独构成一个非空循环排列,这样前p-1种物品构成k-1个非空循环排列,方法数为s(p-1,k-1);

也可以前p-1种物品构成k个非空循环排列,而第p个物品插入第i个物品的左边,这有(p-1)*s(p-1,k)种方法。

 

 

第二类Stirling数 S(p,k)

   

S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。

k!S(p,k)是把p个人分进k间有差别(如:被标有房号)的房间(无空房)的方法数。

   

S(p,k)的递推公式是:S(p,k)=k*S(p-1,k)+S(p-1,k-1) ,1<= k<=p-1

边界条件:    S(p,0)=0  S(p,p)=1

  

递推关系的说明:

考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为S(p-1,k-1);

可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有k*S(p-1,k)种方法。

  

第一类斯特林数和第二类斯特林数有相同的初始条件,但递推关系不同。



你可能感兴趣的:(斯特林数)