1.23神经网络框架(sig函数),逆向参数调整法(梯度下降法,链式法则(理解,及处理多层神经网络的方式))
框架输入层隐藏层存在一个阈值,如果低于某一阈值就不激活;高于了就激活输出层逆向参数调整方法初始阶段,随机设置权重值w1,w2依据训练集两个数学方法(梯度下降、链式法则)调参借助两个数学方法当导数为负时,步幅为正就是说,这个调参是建立在预测结果与实际结果基础上的;自变量是参数,权重,因变量是反映预测结果与实际间的差距(为误差平方和),目的是要让这个差距最小就是不同的权重参数下,有不同的误差差距,由此