E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
李航-统计机器学习
(5)
李航
《统计学习方法》基于Python实现——决策树
决策树模型决策树是一种基本的分类和回归方法,本文主要讨论用户分类的决策树。决策树模型呈现树桩结构,在分类问题中,它表示基于特征对实例进行分类的过程。它可以认为是if-then的规则的集合也可以认为是定义在特征空间与类空间上的条件概率分布。决策树学习通常包括3个步骤:特征选择,决策树的生成和决策树的修剪。优点:模型具有可读性,解释性较强,分类速度快,准确性高,可以处理连续和种类字段,不需要任何领域知
奥卡姆的剃刀
·
2022-12-21 17:06
机器学习
Python
python
决策树
统计学习方法
【机器学习】白板公式推导-1-书籍&视频
【机器学习】白板公式推导-1-介绍书籍列表频率派-
统计机器学习
统计学习方法-
李航
ESL贝叶斯派-概率图模型模式识别与机器学习(PRML)-ChristopherM.BishopMLAPP其他机器学习(西瓜书
暖焱
·
2022-12-20 17:01
#
机器学习-公式推导
机器学习
人工智能
主成分分析(PCA)(principal component analysis)
参考deeplearningbook.org一书2.12Example:PrincipalComponentsAnalysis参考
李航
统计学习方法第16章主成分分析本文的目录如下:目录用到的知识点PCA
大豆木南
·
2022-12-20 15:36
人工智能
机器学习
自然语言处理
线性代数
pca降维
机器学习
算法
统计学习方法概论
也是好久没更新了,前面项目基础开发的工作已经基本完结,但又给了我两个任务,一个是做一个QA系统,一个是做一个推荐系统,想想我是基本不会啊,于是只是学呗,网上找了一些资料,人家说先看
李航
老师的书,于是做个笔记
一枝韩独秀
·
2022-12-20 09:57
统计学习方法
统计学习方法概论
统计学习方法- 统计学习方法概论
1.统计学习统计学习是关于计算机数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科,统计学习又称为
统计机器学习
。它的主要特点包括:统计学习是以计算机和网络为平台,是建立在计算机和网络之上的。
海伦•
·
2022-12-20 09:25
人工智能相关书籍阅读笔记
概率论
机器学习
统计学习方法
李航
课后习题答案 第二版 机器学习
李航
《统计学习方法》课后习题答案(第2版)【
李航
课后习题解答+书中疑点推导+算法代码实现+可私聊耐心解答(48小时内回复),包会!!】
#苦行僧
·
2022-12-20 09:50
学习方法
人工智能
深度学习
统计学习
机器学习——(1)
参考书籍机器学习,周志华,清华大学出版社,2016统计学习方法,
李航
,清华大学出版社,2012DeepLearning,I.Goodfellow,Y.BengioandA.Courville,2016课程推荐
Sky_177
·
2022-12-19 09:54
隐马尔可夫模型最详细讲解 HMM(Hidden Markov Model)
www.bilibili.com/video/BV1BW411P7gV悉尼科大徐亦达https://www.bilibili.com/video/BV1MW41167Rfshuhuai大神如果是喜欢看书的,请参考
李航
老师
BruceJust
·
2022-12-18 16:19
Machine
Learning
NLP
机器学习
算法
自然语言处理
动态规划
机器学习笔记-PCA(主成分分析)
参考资料(大量参考了第一个链接,里面讲的非常详细):https://zhuanlan.zhihu.com/p/77151308统计学习方法(
李航
)https://zhuanlan.zhihu.com/p
Serendipity-Wu
·
2022-12-17 14:49
机器学习
机器学习
人工智能
字节跳动抖音算法岗实习面试(一面+二面)
因此自己面试完后也试着记录了一下,虽然没能通过最终面试,但也希望能给想面试相关岗位的人一些启发和帮助~关于面试准备:算法的技术面主要考察的是算法的灵活使用和现场编程能力,以及相关方向的模型(基本上就是
统计机器学习
cwj1412
·
2022-12-17 12:52
算法
面试
机器学习
字节跳动
深度之眼课程打卡-统计学习方法01
绪论统计学习方法主要是讲
李航
博士统计学习方法那本书,一开始主要讲解了一些基本概念。作业打卡L1和L2范式l1范数的数学定义是所有数绝对值之和。在坐标平面上它是个正方形。l2范数的数
Big_quant
·
2022-12-16 06:34
深度学习
深度之眼
统计学习方法
决策树(decision tree)——(1)生成与度量指标
**注:本博客为
李航
《统计学习方法》与周志华《机器学习》读书笔记,虽然有一些自己的理解,但是其中仍然有大量文字摘自李老师和周老师的书籍内容。
猿童学
·
2022-12-15 22:43
机器学习
机器学习
python
数据挖掘
sklearn
决策树算法总结
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达前言决策树是机器学习模型较常用的一种方法,
李航
老师《统计学习方法》详细的描述了决策树的生成和剪枝,本文根据书中的内容,对决策树进行了总结
小白学视觉
·
2022-12-15 03:49
决策树
算法
python
机器学习
人工智能
python降维中特征维度的问题
python降维中特征维度的问题最近在学PCA降维,参考的是
李航
老师的统计学习方法第二版,自己上手编程时发现按照
李航
老师P310页公式16.39来定义样本数据时出现了一些问题,特此记录以供日后翻阅sklearn
nofaliure
·
2022-12-14 22:48
机器学习
python
《机器学习》(周志华)第一章 绪论 笔记 学习心得
第1章绪论学习心得由于我之前已经学过了
李航
老师的《统计学习方法(第2版)》,所以这里面的概念没有啥不懂得,不会像教程说的有些难,毕竟学过一部分了。
ML--小小白
·
2022-12-14 15:21
机器学习(周志华)
机器学习
人工智能
1.4+1.5 L1、L2正则化
2022.08.27
李航
老师《统计学习方法》:一.统计学习及监督学习概论#本文目的就是为学者简化学习内容,提取我认为的重点把书读薄;#本文重点:1.5正则化理解一.统计学习及监督学习概论1.4+1.5L1
羊老羊
·
2022-12-14 15:07
统计学方法
李航
机器学习
统计学习方法
L1
L2正则化
【
李航
-统计学习方法】1.4模型评估与模型选择
1、训练误差与测试误差不同的学习方法会给出不同的模型。当损失函数给定时,基于损失函数的模型的训练误差和模型的测试误差就成为学习方法评估的标准。训练误差的大小,对判断给定的问题是不是一个容易学习的问题有意义。也就是说,一个问题越容易学习,那么它的训练误差就越小。但这本质上不重要。测试误差,反映了学习方法对未知的测试数据集的预测能力。测试误差小的方法具有更好的预测能力,是有效的方法。通常将学习方法对未
smile4548656
·
2022-12-14 15:01
统计学习
算法
机器学习
人工智能
《统计学习方法》(
李航
):模型评估选择、正则化与交叉验证、泛化能力、生成模型与判别模型、监督学习应用
PS:所写内容为读书笔记,如需了解更详细内容请购买正版书籍1.4模型评估与选择1.4.1训练误差和测试误差训练误差:模型对训练集预测结果的误差测试误差:模型对测试集测试结果的误差1.4.2过拟合与模型选择过拟合(over-fitting):学习时选择的模型所包含的参数过多,以至于出现这一模型对已知数据预测很好,但对未知数据预测很差的现象。当模型的复杂度增大时,训练误差会逐渐减小并趋近于0,而测试误
APPLECHARLOTTE
·
2022-12-14 15:50
#
李航统计学习
学习
机器学习
python
从朴素贝叶斯到维特比算法:详解隐马尔科夫模型
隐马尔科夫模型是用于标注问题的
统计机器学习
模型,是一种生成模型。
机器之心V
·
2022-12-13 20:40
人工智能
数据结构与算法
python
个人学习笔记:EM与GMM算法
本篇文章为个人学习EM算法框架时的笔记,其中主要参考了
李航
老师的《统计学习方法》这本书以及PRML,中间有一些内容是从其他一些网络资料上摘抄下来的,具体来源比较杂,这里就不一一列出了,如有侵权请联系删除
ZJ&ZYQ
·
2022-12-13 10:18
笔记
算法
python
机器学习
决策树理解
决策树理解(一)参考书籍:《机器学习》周志华,第1版《统计学习方法》
李航
,第2版用来记录自己对书中知识的理解,加强自己的理解和记忆,同时提出自己迷惑不解的地方,提高自己编辑的表达能力。
小耗子-Axel
·
2022-12-13 06:18
算法
决策树
机器学习
机器学习常用角标及其含义
李航
《统计学习方法》:d∗=maxα,β;αi≥0θD(
MiaL
·
2022-12-12 14:13
机器学习
||《统计学习方法》
李航
_第1章_蓝皮(学习笔记)
第1章统计学习方法概论监督学习统计学习三要素模型策略(经验风险和结构经验风险)判别模型与生成模型补充(含课后作业)MLE、MAP和贝叶斯估计证明经验风险最小化等价于极大似然估计(在特定条件下)证明结构风险最小化与最大后验概率等价(在特定条件下)贝叶斯估计挑重点记录一下。监督学习监督学习有一个重要的假设:设输入的随机变量XXX和YYY遵循联合概率分布P(X,Y)P\left({X,Y}\right)
Rlin_by
·
2022-12-12 14:16
统计学习方法
CV小白入门路线(庆六一,送书送脑图)
机器学习基础其实CV所用到的基础知识和NLP差不多,早期都是
统计机器学习
,不过两者的数据模态不同,预处理方式、特征提取还是有
李rumor
·
2022-12-11 21:32
计算机视觉
机器学习
人工智能
深度学习
算法
机器学习(0):机器学习概述及基本概念
虽然之前粗略的学过一点皮毛,但是当初笔记做的实在不好,这次趁着看吴恩达老师的机器学习教学视频以及
李航
老师的《统计学习方法》,重新整理一下自己的笔记,同时也是整理一下自己的思路。
棉花糖灬
·
2022-12-11 18:27
机器学习
机器学习
结合openCV学习DIP之机器学习CNN
并且以此为依据可以从其他未知图像中检测出相似或相同的该对象A.在特征提取上,传统的图像处理都是自行设计提取固定特征的算子,在深度学习上主要是利用CNN网络来广泛的提取图像的特征.笔记以吴恩达课程为基础,全面介绍机器学习相关术语,再以
李航
Heisenberg-
·
2022-12-11 16:52
DIP
机器学习
OpenCV3学习笔记
统计学习方法
李航
课后习题答案 第二版 机器学习
李航
《统计学习方法》课后习题答案(第2版)【
李航
课后习题解答+书中疑点推导+算法代码实现+可私聊耐心解答(48小时内回复),包会!!】
#苦行僧
·
2022-12-11 13:12
学习方法
人工智能
深度学习
统计学
论文学习笔记:Detecting and quantifying causal associations in large nonlinear time series datasets
Detectingandquantifyingcausalassociationsinlargenonlineartimeseriesdatasets基于大规模非线性时间序列的因果关系推断这篇论文发表在SCIENCEADVANCES,它属于中科院分区一区的,影响因子在13.77作者:JakobRunge他主要从事与地球科学领域相关的因果推断和
统计机器学习
方面的工作
清茶品也醉
·
2022-12-11 10:23
学习
用python写多项式拟合_多项式最小二乘法拟合的python代码实现
最近学习
李航
《统计学习方法》,在github上找到了这本书对应的源码,决定自己跟着敲一敲代码,也感谢代码的贡献者,链接如下:https://github.com/fengdu78/lihang-codegithub.com
weixin_39637256
·
2022-12-11 00:21
用python写多项式拟合
感知机对偶算法
知识源于——《统计学习方法(第二版)》
李航
感知机(perception)一种二分类的线性分类模型。输入为实例的特征向量,输出为实例的类别(二分类类别为-1,+1二值)。
木北鲜生
·
2022-12-10 08:03
#
机器学习
Python
算法
机器学习
python
机器学习之高斯混合模型(GMM)及python实现
本章节内容参考了
李航
博士的《统计学习方法》本节不同之处在于分析讨论了多维度空间的高斯混合模型1高斯混合模型推导1.1高斯混合模型定义:高斯混合模型是指具有如下形式的概率分布模型:p(y∣θ)=∑k=1Kαkϕ
董蝈蝈
·
2022-12-09 11:53
机器学习
NLP
算法
python
机器学习
人工智能
numpy
机器学习 - logistic回归
统计机器学习
有两种常见的机器学习算法:logistic回归和SVM,这两种算法都涉及到优化问题,是非常重要的两种机器学习算法,尤其是logistic回归可能是工程上用的最广泛的机器学习算法了。
KeeJee
·
2022-12-08 20:55
机器学习
数据挖掘
机器学习与数据挖掘
机器学习
logistic回归
机器学习入门必读书籍——
李航
《统计学习方法》(文尾免费领取)
《统计学习方法》是计算机及其应用领域的一门重要的学科。《统计学习方法》全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实
无知红
·
2022-12-08 16:47
人工智能
机器学习
人工智能
电子书
机器学习--感知机学习算法
以下只给出了感知机算法的Python代码实现,想从头开始了解机器学习以及感知机模型的推荐
李航
老师的统计学习方法蓝宝书感知机算法原始形式#感知机(原始形式)importnumpyasnp#创建测试集,包含三个实例点和两个类别
weixin_45752264
·
2022-12-08 12:23
机器学习
算法
python
神经网络中的Regularization和dropout
1正则化机器学学习中的正则化相关的内容可以参见
李航
的书:统计学习方法。参阅者可以先了解有关的内容。正则化是用来降低overfitting(过拟合)的,减少过拟合的的其他方法有:增加训练集数
这孩子谁懂哈
·
2022-12-07 18:55
Machine
Learning
机器学习
神经网络
正则
统计学
【机器学习】提升方法AdaBoost二分类例题 C++实现
题目来源:统计学习方法(第二版
李航
)第八章第一节AdaBoost例子实现P158题目:给定如图所示训练数据集。假设弱分类器由xv产生,其阈值v使该分类器在训练数据上分类误差率最低。
ayitime
·
2022-12-07 12:25
分类
c++
深度学习入门资料分类汇总(持续更新)
机器学习资料入门课程-斯坦福CS229课程《统计学习方法》
李航
DeepLearning入门资料深度学习工程师微专业-一线人工智能大师吴恩达亲研-网易云课堂斯坦
刀客塔辛
·
2022-12-07 05:10
AI
深度学习
机器学习
BN和LN
covariateshift是分布不一致假设之下的分支问题,指源空间和目标空间的条件概率是一致的,但边缘概率不同;而
统计机器学习
中的经典假设是“源空间(sourcedomain)和目标空间(targetdomain
Mark_Aussie
·
2022-12-06 18:30
nlp
深度学习
统计学习方法
李航
课后习题答案 第二版 机器学习
李航
《统计学习方法》课后习题答案(第2版)【
李航
课后习题解答+书中疑点推导+算法代码实现+可私聊耐心解答(48小时内回复),包会!!】
#苦行僧
·
2022-12-05 16:25
学习方法
人工智能
统计学
监督学习
机器学习
一张图掌握SVM——支持向量机
前言:笔者在学习SVM的过程中找了很多书籍、资料以及学习笔记,但是感觉看起来都云里雾里莫名其妙,始终不得要领,最近在看《统计学习方法》---
李航
---清华大学出版社---ISBN978-7-302-27595
科学元某人
·
2022-12-05 11:24
人工智能和机器学习
人工智能
机器学习
svm
支持向量机
KNN在Mnist上的实现
Statistical-Learning-Method_Code/Mnistatmaster·Dod-o/Statistical-Learning-Method_Code(github.com)总结2022年10月15日数据集来源也有
李航
Sky_codes
·
2022-12-05 10:12
python
python
机器学习
人工智能
knn
pytorch
感知机模型学习笔记及Python实现
最近刚接触
李航
博士的《统计学习方法》,还是挺赞的一本书,特别适合机器学习初学者的入门。里面主要阐述机器学习中的几大经典模型的理论方面,包括感知机、kNN、决策树、朴素贝叶斯、逻辑回归、SVM等。
wangxin0314
·
2022-12-04 13:27
python
感知机
李航
《统计学习方法》学习笔记及python实现:第二章 感知机
感知机(perceptron)是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和–1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。模型假设输入空间(特征空间)是x⊆Rn,输出空间是Y={+1,-
XB_please
·
2022-12-04 13:48
感知机
统计学习方法
李航老师
python实现
PCA主成分分析法浅理解
更进一步说,
统计机器学习
方法就是以高数、线代和概率论为基石构筑的“一栋大厦”。下面主要沿着老师ppt的思路讲讲对PCA方法的个人理解。
u小鬼
·
2022-12-03 17:30
ML
算法
概率论
学习深度学习与图像处理中的一些感悟(1)
上学时也看了很多理论的学习,有关传统图像的、数学方面推导的书的和视频,像西瓜书,
李航
的统计等等,还做了很多笔记,但是效果甚微,一到图像处理还是用matlab或者cv2库解决。后边反思原因,更多的是代
搞事情啊
·
2022-12-02 22:41
python
计算机视觉
目标检测
人工智能
lstm结构图_深入理解RNN与LSTM
随着神经网络在各个领域的渗透,传统以
统计机器学习
为主的NLP问题,也逐渐开始采用深度学习的方法来解决。
weixin_39544101
·
2022-12-02 16:47
lstm结构图
2.逻辑回归算法梳理
逻辑回归与线性回归的联系与区别2、逻辑回归的原理3、逻辑回归损失函数推导及优化4、正则化与模型评估指标5、逻辑回归的优缺点6、样本不均衡问题解决办法7.sklearn参数参考资料1、西瓜书2、cs229吴恩达机器学习课程3、
李航
统计学习
weixin_30823683
·
2022-12-02 10:32
人工智能
数据结构与算法
【面经】字节AI Lab-NLP算法热乎面经
PS:offercall里说我的leader是
李航
,看了看手里的小蓝书,意外的惊喜面
zenRRan
·
2022-12-01 20:02
字节跳动 AI Lab 总监
李航
:语言模型的过去、现在和未来
作者|
李航
编译|李梅、黄楠编辑|陈彩娴转自:AI科技评论从俄国数学家AndreyMarkov(安德烈·马尔可夫)提出著名的「马尔科夫链」以来,语言建模的研究已经有了100多年的历史。
深度学习技术前沿
·
2022-12-01 20:02
大数据
自然语言处理
算法
编程语言
python
想成为深度学习的高手必须要懂哪些知识?
转http://www.elecfans.com/rengongzhineng/603994.html深度学习本质上是深层的人工神经网络,它不是一项孤立的技术,而是数学、
统计机器学习
、计算机科学和人工神经网络等多个领域的综合
zjlooojoe
·
2022-12-01 08:06
python
深度学习
上一页
3
4
5
6
7
8
9
10
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他