- 【密码学RSA】共模攻击原理详解_已知e1*e2的共模攻击题
malloc_冲!
rsa密码学
本题需要了解共模攻击推导过程及原理:1.共模攻击原理共模攻击即用两个及以上的公钥(n,e)来加密同一条信息m已知有密文:c1=pow(m,e1,n)c2=pow(m,e2,n)条件:当e1,e2互质,则有gcd(e1,e2)=1根据扩展欧几里德算法,对于不完全为0的整数a,b,gcd(a,b)表示a,b的最大公约数。那么一定存在整数x,y使得gcd(a,b)=ax+by所以得到:e1*s1+e2*
- 数论知识点总结(一)
Mark 85
数学数论算法数据结构
文章目录目录文章目录前言一、数论有哪些二、题法混讲1.素数判断,质数,筛法2.最大公约数和最小公倍数3.快速幂4.约数前言现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣!一、数论有哪些数论原根,素数判断,质数,筛法最大公约数,gcd扩展欧几里德算法,快速幂,exgcd,不定方程,进制,中国剩余定理,CRT,莫比乌斯反演,逆元,Lucas定理,类欧几里得算法,调和级数
- 扩展欧几里德算法详解以及乘法逆元
Stray_Lambs
数学acm扩展算法
转载网址:http://blog.csdn.net/zhjchengfeng5/article/details/7786595有些地方看不懂,但觉得写的很棒,先转载下来,以后慢慢研究……扩展欧几里德算法:谁是欧几里德?自己百度去先介绍什么叫做欧几里德算法有两个数ab,现在,我们要求ab的最大公约数,怎么求?枚举他们的因子?不现实,当ab很大的时候,枚举显得那么的naïve,那怎么做?欧几里德有个十
- Python算法设计 - 拓展欧几里得算法
小鸿的摸鱼日常
python算法设计算法python
目录一、拓展欧几里得算法二、Python算法实现三、作者Info一、拓展欧几里得算法扩展欧几里德算法是数论中最经典的算法之一,其目的用来解决不定方程。用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=GCD(a,b)什么是不定方程?不定方程(丢番图方程)是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等)的方程或方程组。二、Python算法实现defg
- 最大公约数
敲可爱的小超银
.欧几里德算法和扩展欧几里德算法欧几里德算法欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:定理:gcd(a,b)=gcd(b,amodb)证明:a可以表示成a=kb+r,则r=amodb假设d是a,b的一个公约数,则有d|a,d|b,而r=a-kb,因此d|r因此d是(b,amodb)的公约数假设d是(b,amodb)的公约数,则d|b,d|r,但是a
- 第二十九章 数论——中国剩余定理与线性同余方程组
Turing_Sheep
算法合集算法
第二十九章数论——中国剩余定理与线性同余方程组一、中国剩余定理1、作用:2、内容:3、证明:(1)逆元的存在性(2)验证定理的正确性4、代码实现:(1)步骤:(2)问题:(3)代码:一、中国剩余定理1、作用:我们上一章节中,详细地讲解了如何利用扩展欧几里德算法解一个线性同余方程,但是如果我们遇到了线性同余方程组的话,我们就需要用到今天所讲解的中国剩余定理。但是中国剩余定理的成立前提是,方程组中的模
- 第二十八章 数论——扩展欧几里德算法与线性同余方程
Turing_Sheep
算法合集算法
第二十八章扩展欧几里德算法一、裴蜀定理1、定理内容2、定理证明二、扩展欧几里德定理1、作用2、思路3、代码三、线性同余方程1、问题2、思路3、代码一、裴蜀定理1、定理内容对于任意整数aaa和bbb,一定存在整数xxx,yyy使得ax+byax+byax+by是gcd(a,b)gcd(a,b)gcd(a,b)的倍数。如果反过来说的话,如果m=ax+bym=ax+bym=ax+by,那么mmm一定是g
- 第二十七章 数论——快速幂与逆元
Turing_Sheep
算法合集算法
第二十七章快速幂与扩展欧几里德算法一、快速幂1、使用场景2、算法思路(1)二进制优化思想(2)模运算法则3、代码实现(1)问题(2)代码二、快速幂求逆元1、什么是逆元?(1)同余(2)逆元2、逆元的求法(1)欧拉定理(2)费马小定理(3)问题(4)求解逆元一、快速幂1、使用场景我们知道,如果我们想计算一个qkq^kqk,我们可以不断地去乘,但这样的时间复杂度是O(k)O(k)O(k),这个是复杂度
- 数论入门基础(同余定理/费马小定理/扩展欧几里德算法/中国剩余定理)
Allen_0526
数论同余定理费马小定理Exgcd中国剩余定理
本文整理了同余定理/费马小定理/扩展欧几里德算法/中国剩余定理基本的念描述、结论证明和模板应用同余定理1.描述:同余定理是数论中的重要概念。给定一个正整数m,如果两个整数a和b满足(a-b)能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(modm)。2.符号:两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对模m同余或a同余于b模m。记作a≡b(mo
- 最大公约数(Gcd)两种算法(Euclid && Stein) [整理]
weixin_33832340
很老的东东了,其实也没啥好整理的,网上很多资料了,就当备用把:-)1.欧几里德算法和扩展欧几里德算法欧几里德算法欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:定理:gcd(a,b)=gcd(b,amodb)证明:a可以表示成a=kb+r,则r=amodb假设d是a,b的一个公约数,则有d|a,d|b,而r=a-kb,因此d|r因此d是(b,amodb)
- C语言如何求最大公约数?错觉?C语言两行代码描述辗转相除法
莫影老师
C语言小题目大智慧公约数C语言C语言编程C语言学习C语言试题
前言本文主要介绍的是C语言常规的一道题,希望对于广大读者学习C语言有一些帮助。使用C语言求解a和b的最大公约数。该问题可以采用辗转相除法去解决!辗转相除法欧几里德算法又称辗转相除法,欧几里德算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里德在其著作《TheElements》中最早描述了这种算法,所以被命名为欧几里德算法。扩展欧几里德算法可用于RSA加密等领域。假如需要求1997和615两
- 欧几里德算法、扩展欧几里德算法、乘法逆元
zixiaqian
转http://hi.baidu.com/dongxiang2007/blog/item/db9b98626ce722d5e6113a51.html欧几里德算法、扩展欧几里德算法、乘法逆元2009年05月22日星期五下午12:15最近看了一本书《程序员》里面说的一个面试题:求两个数的最大公约数:SoEasy的题目看过C的人都知道怎么写这个程序1.传统方法:穷举#includeintmain(){i
- 扩展欧几里德算法
??yy
voidgcd(inta,intb,int&d,int&x,int&y){if(!b){d=a;x=1;y=0;}else{gcd(b,a%b,d,y,x);y-=x*(a/b);}}扩展欧几里德算法的应用主要有以下三方面:(1)求解不定方程;(2)求解模线性方程(线性同余方程);(3)求解模的逆元;(1)使用扩展欧几里德算法解决不定方程的办法:对于不定整数方程pa+qb=c,若cmodGcd(p
- 扩展欧几里德算法求不定方程
yuxiaoyu.
例题是POJ1061青蛙的约会题目大意是,一个周长为L的圆,A、B两只青蛙,分别位于x、y处,每次分别能跳跃m、n,问最少多少次能够相遇,如若不能输出“Impossible”此题其实就是扩展欧几里德算法-求解不定方程,线性同余方程。设过k1步后两青蛙相遇,则必满足以下等式:(x+m*k1)-(y+n*k1)=k2*L(k2=0,1,2....)//这里的k2:存在一个整数k2,使其满足上式稍微变一
- 模数非互质的同余方程组(非互质版中国剩余定理)
weixin_30596343
之前介绍到的中国剩余定理只能求解模数两两互质的同余方程组。那么,模数如果不一定两两互质的情况应该怎么求呢?下面介绍通过合并方程的方法来解决问题(要用到扩展欧几里德算法)。顾名思义,合并方程就是把所有的同余方程组合并成一个。举个例子,合并同余方程组x%A=a①x%B=b②现在给出两种合并的方法:1)要把①②式合并成x%C=c③易知C一定是A和B的最小公倍数的倍数,否则不可能同时满足①②两式。这里我们
- 关于exgcd算法(扩展欧几里德算法)的几点总结
Object_S
EXGCD算法的概念:一种用来求解形如的同余方程的算法EXGCD算法的时间复杂度:求解的时间复杂度大约为EXGCD算法的代码:#include#includeusingnamespacestd;inta,b,x,y;voidexgcd(inta,intb){if(b==0){x=1,y=0;return;}exgcd(b,a%b);inttemp=x;x=y,y=temp-a/b*y;return
- 欧几里得算法及其扩展以及运用
风灵无畏YY
数论gcdNOIPgcd
以下内容部分来自度娘,另一部分来自百度百科。扩展欧几里德算法liaoy这是本校一位学长关于扩展欧几里得的讲解,讲得很好,欢迎大家阅读【介绍】扩展欧几里德算法是用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=gcd(a,b)=d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。【欧几里得算法】一、概述欧几里德算法又称辗转相除法,用于计算两个整数a,b的
- A/B(逆元)
你就是根号四
数论
逆元定义:对于正整数和,如果有,那么把这个同余方程中的最小正整数解叫做模的逆元。一般用欧几里得扩展来做:ax+by=1;称a和b互为逆元详细扩展欧几里德算法介绍,解决该题的关键是:1、了解扩展欧几里德算法,可以运用其解出gcd(a,b)=ax1+by1中的x1、y1的值2、由题可得以下内容:n=A%9973,则n=A-k*9973。设A/B=x,则A=Bx。所以Bx-k*9973=n。即Bx-99
- 扩展欧几里德算法详解
ltrbless
ACM数学
1、问题引入:有一个经典的问题:直线上的点,求直线ax+by+c=0上有多少个整数点(x,y)满足x->(x1,x2),y->(y1,y2);怎么来找整数解,这时就可以利用扩展欧几里德算法.2、扩展欧几里德算法:先附上代码:voidexgcd(inta,intb,int&d,int&x,int&y){if(!b)d=a,x=1,y=0;else{exgcd(b,a%b,d,x,y);y-=x*(a
- 数论基础(gcd + 拓展欧几里得)
Southan97
AlgorithmsNumberTheoryMathematics
求连个数的最大公约数gcd:typedeflonglongll;constintMAXN=10000+7;llgcd(lla,llb){returnb?gcd(b,a%b):a;}拓展欧几里得:欧几里得定理:gcd(a,b)=gcd(b,a%b);gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)扩展欧几里德算法是用来在已知a,b求解一组x,y使得ax+by=Gcd(
- 欧几里得及扩展欧几里得算法
weixin_34087301
欧几里得算法这个就是常说的辗转相除法,用于计算两个整数$a,b$的最大公约数,即$$gcd(a,b)=gcd(b,a\;mod\;b)$$intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}ViewCode扩展欧几里德算法是用来在已知$a,b$求一组整数解$x,y$使它们满足等式$$ax+by=gcd(a,b)$$(解一定存在根据数论中的相关定理具体怎么证明我也不
- 欧几里德算法和扩展欧几里德算法
highyyy
欧几里德算法欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:定理:gcd(a,b)=gcd(b,amodb)证明:a可以表示成a=kb+r,则r=amodb假设d是a,b的一个公约数,则有d|a,d|b,而r=a-kb,因此d|r因此d是(b,amodb)的公约数假设d是(b,amodb)的公约数,则d|b,d|r,但是a=kb+r因此d也是(a,b)的
- 扩展欧几里得算法及其应用
acm_lkl
学习心得数论
欧几里得算法欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。证明略去了。基本代码实现:1intgcd(inta,intb)2{3if(b==0)4returna;5return6gcd(b,a%b);7}扩展欧几里得算法扩展欧几里德算法是欧几里得算法
- 【初级算法】exgcd
yingxiewu
算法知识点
扩展欧几里德算法是用来在已知a,b求解一组{x,y}使它们满足贝祖等式:ax+by=gcd(a,b)=d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。emm.这东西唯一给我的感觉,,好难啊。,,我只学过一点点高中数学、然后死命的脑补了一下。思考了一段时间。emmm。终于弄懂了一点上代码intexgcd(inta,intb,int&x,int&y){if(b==0
- 扩展欧几里得定理详解和运用(就不信你看不懂!)
易斯龙今天记单词了吗?快滚去学习
数论
1:扩展欧几里得内容:扩展欧几里德算法是用来在已知a,b求解一组x,y使得ax+by=c.(若c%gcd(a,b)!=0)则无解所以我们求ax+by=c是不是可以转化为求ax+by=kgcd(a,b)k为整数呢?ex1:最大公因数的这个公式大家都认识吧?gcd(a,b)=gcd(b,a%b);所以我们看:(用b代替a,a%b代替b)ax+by=kgcd(a,b);bx+(a%b)y=gcd(b,a
- 欧几里德算法的扩展-求解不定方程
weixin_30377461
扩展欧几里德算法是用来在已知a,b求解一组p,q使得p*a+q*b=Gcd(p,q)(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。下面是一个使用C++的实现:intexGcd(inta,intb,int&x,int&y){if(b==0){x=1;y=0;returna;}intr=exGcd(b,a%b,x,y);intt=x;x=y;y=t-a/b*y;re
- 基于扩展欧几里得的证明的个人理解
amateur
数论
扩展欧几里德算法是用来在已知a,b求解一组整数解(x,y)使得ax+by=gcd(a,b),这个方程一定有解,记d=gcd(a,b),a=d*a',b=d*b',那么必须有d/b,否则方程变为a'x+b'y=b/d,左边是整数,右边却不是,这样就无解了。C++实现:intgcd(inta,intb,int&x,int&y){if(b==0){x=1;y=0;returna;}intr=gcd(b,
- 拓展欧几里得
可乐味诗人
刷题数据结构
啊。。我是一条咸鱼鱼扩展欧几里德算法基本算法:对于不完全为0的非负整数a,b,gcd(a,b)表示a,b的最大公约数,必然存在整数对x,y,使得gcd(a,b)=ax+by。证明:设a>b。1,显然当b=0,gcd(a,b)=a。此时x=1,y=0;2,ab!=0时设ax1+by1=gcd(a,b);bx2+(amodb)y2=gcd(b,amodb);根据朴素的欧几里德原理有gcd(a,b)=g
- 扩展欧几里德算法(gcd扩展使用)
Mudrobot
数学
首先让我们先来普及一下,关于gcd的知识,这里几个字就可以搞定,gcd(a,b)就是指a,b的最大公约数,我靠,你可能会说这个有什么用呢?不要着急,我们马上就会进行讲解:首先先来普及一些基本概念:首先他们必须满足贝祖等式(好高大上的名字啊!):ax+by=gcd(a,b)。于是由这个定理,我们成功推出了:(说实话我TM也没有听懂是怎么推的,呵呵!)所以,我们由gcd函数的知识,可以成功的推出,如下
- 扩展欧几里德算法(附证明)
0xLLLLH
acm数论
扩展欧几里德算法(附证明)tags:acm数论完全没接触过数论的渣渣脑抽不想敲代码,便看看数论冷静一下.扩展欧几里德算法附证明证明扩展欧几里得算法在acm-icpc中是常用算法,主要用于在已知a,b的情况下求解一组x,y,使它们满足贝祖等式:ax+by=gcd(a,b)=d.顾名思义,该算法是对欧几里得算法的拓展.其代码也是在gcd的基础上做小小的修改.intexGcd(inta,intb,int
- 多线程编程之理财
周凡杨
java多线程生产者消费者理财
现实生活中,我们一边工作,一边消费,正常情况下会把多余的钱存起来,比如存到余额宝,还可以多挣点钱,现在就有这个情况:我每月可以发工资20000万元 (暂定每月的1号),每月消费5000(租房+生活费)元(暂定每月的1号),其中租金是大头占90%,交房租的方式可以选择(一月一交,两月一交、三月一交),理财:1万元存余额宝一天可以赚1元钱,
- [Zookeeper学习笔记之三]Zookeeper会话超时机制
bit1129
zookeeper
首先,会话超时是由Zookeeper服务端通知客户端会话已经超时,客户端不能自行决定会话已经超时,不过客户端可以通过调用Zookeeper.close()主动的发起会话结束请求,如下的代码输出内容
Created /zoo-739160015
CONNECTEDCONNECTED
.............CONNECTEDCONNECTED
CONNECTEDCLOSEDCLOSED
- SecureCRT快捷键
daizj
secureCRT快捷键
ctrl + a : 移动光标到行首ctrl + e :移动光标到行尾crtl + b: 光标前移1个字符crtl + f: 光标后移1个字符crtl + h : 删除光标之前的一个字符ctrl + d :删除光标之后的一个字符crtl + k :删除光标到行尾所有字符crtl + u : 删除光标至行首所有字符crtl + w: 删除光标至行首
- Java 子类与父类这间的转换
周凡杨
java 父类与子类的转换
最近同事调的一个服务报错,查看后是日期之间转换出的问题。代码里是把 java.sql.Date 类型的对象 强制转换为 java.sql.Timestamp 类型的对象。报java.lang.ClassCastException。
代码:
- 可视化swing界面编辑
朱辉辉33
eclipseswing
今天发现了一个WindowBuilder插件,功能好强大,啊哈哈,从此告别手动编辑swing界面代码,直接像VB那样编辑界面,代码会自动生成。
首先在Eclipse中点击help,选择Install New Software,然后在Work with中输入WindowBui
- web报表工具FineReport常用函数的用法总结(文本函数)
老A不折腾
finereportweb报表工具报表软件java报表
文本函数
CHAR
CHAR(number):根据指定数字返回对应的字符。CHAR函数可将计算机其他类型的数字代码转换为字符。
Number:用于指定字符的数字,介于1Number:用于指定字符的数字,介于165535之间(包括1和65535)。
示例:
CHAR(88)等于“X”。
CHAR(45)等于“-”。
CODE
CODE(text):计算文本串中第一个字
- mysql安装出错
林鹤霄
mysql安装
[root@localhost ~]# rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_64.rpm Preparing... #####################
- linux下编译libuv
aigo
libuv
下载最新版本的libuv源码,解压后执行:
./autogen.sh
这时会提醒找不到automake命令,通过一下命令执行安装(redhat系用yum,Debian系用apt-get):
# yum -y install automake
# yum -y install libtool
如果提示错误:make: *** No targe
- 中国行政区数据及三级联动菜单
alxw4616
近期做项目需要三级联动菜单,上网查了半天竟然没有发现一个能直接用的!
呵呵,都要自己填数据....我了个去这东西麻烦就麻烦的数据上.
哎,自己没办法动手写吧.
现将这些数据共享出了,以方便大家.嗯,代码也可以直接使用
文件说明
lib\area.sql -- 县及县以上行政区划分代码(截止2013年8月31日)来源:国家统计局 发布时间:2014-01-17 15:0
- 哈夫曼加密文件
百合不是茶
哈夫曼压缩哈夫曼加密二叉树
在上一篇介绍过哈夫曼编码的基础知识,下面就直接介绍使用哈夫曼编码怎么来做文件加密或者压缩与解压的软件,对于新手来是有点难度的,主要还是要理清楚步骤;
加密步骤:
1,统计文件中字节出现的次数,作为权值
2,创建节点和哈夫曼树
3,得到每个子节点01串
4,使用哈夫曼编码表示每个字节
- JDK1.5 Cyclicbarrier实例
bijian1013
javathreadjava多线程Cyclicbarrier
CyclicBarrier类
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环的 barrier。
CyclicBarrier支持一个可选的 Runnable 命令,
- 九项重要的职业规划
bijian1013
工作学习
一. 学习的步伐不停止 古人说,活到老,学到老。终身学习应该是您的座右铭。 世界在不断变化,每个人都在寻找各自的事业途径。 您只有保证了足够的技能储
- 【Java范型四】范型方法
bit1129
java
范型参数不仅仅可以用于类型的声明上,例如
package com.tom.lang.generics;
import java.util.List;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value =
- 【Hadoop十三】HDFS Java API基本操作
bit1129
hadoop
package com.examples.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoo
- ua实现split字符串分隔
ronin47
lua split
LUA并不象其它许多"大而全"的语言那样,包括很多功能,比如网络通讯、图形界面等。但是LUA可以很容易地被扩展:由宿主语言(通常是C或 C++)提供这些功能,LUA可以使用它们,就像是本来就内置的功能一样。LUA只包括一个精简的核心和最基本的库。这使得LUA体积小、启动速度快,从 而适合嵌入在别的程序里。因此在lua中并没有其他语言那样多的系统函数。习惯了其他语言的字符串分割函
- java-从先序遍历和中序遍历重建二叉树
bylijinnan
java
public class BuildTreePreOrderInOrder {
/**
* Build Binary Tree from PreOrder and InOrder
* _______7______
/ \
__10__ ___2
/ \ /
4
- openfire开发指南《连接和登陆》
开窍的石头
openfire开发指南smack
第一步
官网下载smack.jar包
下载地址:http://www.igniterealtime.org/downloads/index.jsp#smack
第二步
把smack里边的jar导入你新建的java项目中
开始编写smack连接openfire代码
p
- [移动通讯]手机后盖应该按需要能够随时开启
comsci
移动
看到新的手机,很多由金属材质做的外壳,内存和闪存容量越来越大,CPU速度越来越快,对于这些改进,我们非常高兴,也非常欢迎
但是,对于手机的新设计,有几点我们也要注意
第一:手机的后盖应该能够被用户自行取下来,手机的电池的可更换性应该是必须保留的设计,
- 20款国外知名的php开源cms系统
cuiyadll
cms
内容管理系统,简称CMS,是一种简易的发布和管理新闻的程序。用户可以在后端管理系统中发布,编辑和删除文章,即使您不需要懂得HTML和其他脚本语言,这就是CMS的优点。
在这里我决定介绍20款目前国外市面上最流行的开源的PHP内容管理系统,以便没有PHP知识的读者也可以通过国外内容管理系统建立自己的网站。
1. Wordpress
WordPress的是一个功能强大且易于使用的内容管
- Java生成全局唯一标识符
darrenzhu
javauuiduniqueidentifierid
How to generate a globally unique identifier in Java
http://stackoverflow.com/questions/21536572/generate-unique-id-in-java-to-label-groups-of-related-entries-in-a-log
http://stackoverflow
- php安装模块检测是否已安装过, 使用的SQL语句
dcj3sjt126com
sql
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TABLES列举了给定数据库中的非TEMPORARY表。您也可以使用mysqlshow db_name命令得到此清单。
本命令也列举数据库中的其它视图。支持FULL修改符,这样SHOW FULL TABLES就可以显示第二个输出列。对于一个表,第二列的值为BASE T
- 5天学会一种 web 开发框架
dcj3sjt126com
Web框架framework
web framework层出不穷,特别是ruby/python,各有10+个,php/java也是一大堆 根据我自己的经验写了一个to do list,按照这个清单,一条一条的学习,事半功倍,很快就能掌握 一共25条,即便很磨蹭,2小时也能搞定一条,25*2=50。只需要50小时就能掌握任意一种web框架
各类web框架大同小异:现代web开发框架的6大元素,把握主线,就不会迷路
建议把本文
- Gson使用三(Map集合的处理,一对多处理)
eksliang
jsongsonGson mapGson 集合处理
转载请出自出处:http://eksliang.iteye.com/blog/2175532 一、概述
Map保存的是键值对的形式,Json的格式也是键值对的,所以正常情况下,map跟json之间的转换应当是理所当然的事情。 二、Map参考实例
package com.ickes.json;
import java.lang.refl
- cordova实现“再点击一次退出”效果
gundumw100
android
基本的写法如下:
document.addEventListener("deviceready", onDeviceReady, false);
function onDeviceReady() {
//navigator.splashscreen.hide();
document.addEventListener("b
- openldap configuration leaning note
iwindyforest
configuration
hostname // to display the computer name
hostname <changed name> // to change
go to: /etc/sysconfig/network, add/modify HOSTNAME=NEWNAME to change permenately
dont forget to change /etc/hosts
- Nullability and Objective-C
啸笑天
Objective-C
https://developer.apple.com/swift/blog/?id=25
http://www.cocoachina.com/ios/20150601/11989.html
http://blog.csdn.net/zhangao0086/article/details/44409913
http://blog.sunnyxx
- jsp中实现参数隐藏的两种方法
macroli
JavaScriptjsp
在一个JSP页面有一个链接,//确定是一个链接?点击弹出一个页面,需要传给这个页面一些参数。//正常的方法是设置弹出页面的src="***.do?p1=aaa&p2=bbb&p3=ccc"//确定目标URL是Action来处理?但是这样会在页面上看到传过来的参数,可能会不安全。要求实现src="***.do",参数通过其他方法传!//////
- Bootstrap A标签关闭modal并打开新的链接解决方案
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
Bootstrap里面的js modal控件使用起来很方便,关闭也很简单。只需添加标签 data-dismiss="modal" 即可。
可是偏偏有时候需要a标签既要关闭modal,有要打开新的链接,尝试多种方法未果。只好使用原始js来控制。
<a href="#/group-buy" class="btn bt
- 二维数组在Java和C中的区别
流淚的芥末
javac二维数组数组
Java代码:
public class test03 {
public static void main(String[] args) {
int[][] a = {{1},{2,3},{4,5,6}};
System.out.println(a[0][1]);
}
}
运行结果:
Exception in thread "mai
- systemctl命令用法
wmlJava
linuxsystemctl
对比表,以 apache / httpd 为例 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd on systemctl enable httpd.service 使某服务不自动启动 chkconfig --level 3 httpd off systemctl disable httpd.service 检查服务状态 service h