- RSA非对称加密算法深度解析与技术实现指南
网安秘谈
算法
一、密码学基础与RSA背景RSA算法(Rivest-Shamir-Adleman)是首个实用的非对称加密体系,由MIT学者于1977年提出。其数学基础建立在大数分解难题和欧拉定理之上,核心思想是利用模指数运算构造单向陷门函数。数学预备知识:欧拉函数φ(n):小于n且与n互质的正整数数量贝祖定理:gcd(a,b)=ax+by的解存在性模逆元:a·a⁻¹≡1modn的解存在条件费马小定理:a^(p-1
- 【费马小定理】【欧拉定理】【扩展欧拉定理】及其证明
syzyc
数论数论
费马小定理&欧拉定理及其证明注:此文所提到的“整数”“素数”等均指正数费马小定理对于一个素数ppp,任意整数aaa,若gcd(a,p)=1\gcd(a,p)=1gcd(a,p)=1(即aaa,ppp互质),则:ap−1≡1(modp)a^{p-1}\equiv1\pmod{p}ap−1≡1(modp)证明先找出所有小于等于ppp的与ppp互质的正整数,为序列A={1,2,3,…,p−1}A=\{
- 什么是欧拉公式
玄湖白虎
数学建模正则表达式
欧拉公式在不同的学科中有着不同的含义。复变函数中,e^(ix)=(cosx+isinx)称为欧拉公式,e是自然对数的底,i是虚数单位。拓扑学中,在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理,它于1640年由笛卡尔首先给出证明,后来欧拉于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为笛卡尔定理。他被称为世界上最简洁的公式中
- 欧拉定理
GocNeverGiveUp
数论基础
今天上午近代史和英语又看了看数论,看到了这个费马-欧拉定理,之前还真没见过,只是知道欧拉函数打表欧拉函数φ欧拉定理是用来阐述素数模下,指数同余的性质。欧拉定理:对于正整数N,代表小于等于N的与N互质的数的个数,记作φ(N)例如φ(8)=4,因为与8互质且小于等于8的正整数有4个,它们是:1,3,5,7欧拉定理还有几个引理,具体如下:①:如果n为某一个素数p,则φ(p)=p-1;①很好证明:因为素数
- [算法学习] 逆元与欧拉降幂
Waldeinsamkeit41
学习
费马小定理两个条件:p为质数a与p互质逆元如果要求x^-1modp,用快速幂求qmi(x,p-2)就好欧拉函数思路:找到因数i,phi/i*(i-1),除干净,判断最后的n欧拉降幂欧拉定理应用示例m!是一个非常大的数,所以要用欧拉降幂,不是把m!算出来后取模,而是计算的时候取模。
- 扒一扒那些叫欧拉的定理们(四)——平面几何欧拉定理美学鉴赏
MatheMagician
opensourcepaymentxhtmlmoocinternet
早点关注我,精彩不迷路!上一篇我们聊完了空间立体几何范畴内的欧拉定理及其抽象形式,相关内容回顾请戳:扒一扒那些叫欧拉的定理们(三)——简单多面体欧拉定理的抽象形式扒一扒那些叫欧拉的定理们(二)——简单多面体欧拉定理的证明扒一扒那些叫欧拉的定理们(一)——基本介绍和简单多面体欧拉定理今天我们接着来欣赏一下在中等数学里的平面几何欧拉定理。关于平面几何的追忆和思考记不清何时起爱上的数学,在这个世界里,我
- 扒一扒那些叫欧拉的定理们(七)——欧拉线定理的证明
MatheMagician
xhtmlpaymentopensshandroid模拟器twitter
早点关注我,精彩不迷路!在前面的文章中,我们已经从空间几何欧拉定理介绍到了平面几何欧拉定理的拓展——九点圆定理,相关内容请戳:扒一扒那些叫欧拉的定理们(六)——九点圆定理的证明扒一扒那些叫欧拉的定理们(五)——平面几何欧拉定理的证明扒一扒那些叫欧拉的定理们(四)——平面几何欧拉定理美学鉴赏扒一扒那些叫欧拉的定理们(三)——简单多面体欧拉定理的抽象形式扒一扒那些叫欧拉的定理们(二)——简单多面体欧拉
- 算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理
lijiachang030718
算法算法学习
目录引言一、欧拉函数1.概念2.求每个数的欧拉函数二、线性筛法求欧拉函数三、欧拉定理,费马小定理引言本文主要介绍欧拉函数、线性筛法求欧拉函数,以及公式是怎样推导出来的,并且介绍了欧拉定理,以及费马小定理是怎样被推导出来的。一、欧拉函数1.概念欧拉函数ϕ(N):欧拉函数\phi(N):欧拉函数ϕ(N):1~N中与N互质的数的个数,(互质:公约数只有1的两个自然数)N=p1α1⋅p2α2⋅p3α3⋅⋯
- 【数学】简化剩余系、欧拉函数、欧拉定理与扩展欧拉定理
OIer-zyh
数学#数论OI数学数论
简化剩余系与完全剩余系略有区别。我们定义数组ai(1≤i≤n)a_i(1\lei\len)ai(1≤i≤n)为模mmm的简化剩余系,当且仅当∀1≤i,j≤n\forall1\lei,j\len∀1≤i,j≤n,有ai≢aj(modm)a_i\not\equiva_j\pmodmai≡aj(modm),∀1≤i≤n\forall1\lei\len∀1≤i≤n,有gcd(m,ai)=1\gcd(
- Acwing - 算法基础课 - 笔记(数学知识 · 二)
抠脚的大灰狼
算法Acwing算法基础课算法数论
文章目录数学知识(二)欧拉函数公式法筛法欧拉定理快速幂扩展欧几里得算法中国剩余定理数学知识(二)这一小节主要讲解的内容是:欧拉函数,快速幂,扩展欧几里得算法,中国剩余定理。这一节内容偏重于数学推导,做好心理准备。欧拉函数公式法什么是欧拉函数呢?欧拉函数用ϕ(n)\phi(n)ϕ(n)来表示,它的含义是,111到nnn中与nnn互质的数的个数比如,ϕ(6)=2\phi(6)=2ϕ(6)=2,解释:1
- 数论-乘法逆元【裴蜀定理+欧拉定理/费马小定理】
舍舍发抖
数论算法
具体逆元相关看这个博客,更详细裴蜀定理定义:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。(根据拓展欧几里得定理得出ax+by=gcd(a,b))这篇博客提到拓展欧几里的公式及推导这篇也参考一下一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1证明这里就不详细说了,参考博客:http
- 乘法逆元())
哑巴湖大水怪1
算法
时间复杂度比用费马小定理高,小费马是O(log(p))O(log(p)).但是,小费马要求p是质数,而欧拉定理仅仅要求a,p互质。另外一点就是,用扩欧做得话,时间复杂度也是O(log(p))O(log(p)),且也是要求a,p互质就可以。综合看,扩欧是最优选择。快速幂求逆元时p要求为质数,而扩展欧几里得只要两者互质
- 【数论】一些数论知识
ssllth
数论&数学数论同余约数欧拉定理费马小定理
文章目录前言内容素数关于素数无限个的证明n以内的素数个数算术基本定理约数一个数的正约数个数(约数个数定理)一个数的正约数和(约数和定理)最大公约数和最小公倍数gcd(a,b)*lcm(a,b)=a*b的证明更相减损术欧几里得算法欧拉函数积性函数一些性质同余一些性质欧拉定理费马小定理贝祖定理(裴蜀定理)代码求通解ax+by=nax+by=nax+by=n方程的主要解题步骤线性同余方程乘法逆元线性求逆
- 欧拉函数和欧拉定理
云儿乱飘
数学知识数论
873.欧拉函数-AcWing题库#includeusingnamespacestd;intmain(){intn;cin>>n;while(n--){inta;cin>>a;intret=a;for(inti=2;i1)ret-=ret/a;cout#includeusingnamespacestd;constintN=1e6+10;intp[N]={0};vectorv,st(N);intma
- 欧拉函数算法总结
ykycode
经典算法总结数论算法欧拉函数数学数论线性筛法欧拉定理费马小定理
知识概览欧拉函数为1~n中与n互质的数的个数。假设一个数N分解质因数后的结果为则欧拉函数这可以用容斥原理来证明。欧拉函数的应用欧拉定理:若a与n互质,则。费马小定理:欧拉定理中的n为质数p时,可以得到若a与p互质,则。例题展示欧拉函数题目链接活动-AcWing系统讲解常用算法与数据结构,给出相应代码模板,并会布置、讲解相应的基础算法题目。https://www.acwing.com/problem
- 初等数论基础
satadriver
数学算法抽象代数
欧拉函数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉函数\phi(x),其中x是正整数,函数的值是从0到x-1之间与x互为质数的个数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉定理aϕ(m)=1(modm),其中m和a是大于1的正整数a^{\phi(m)}=1(mod\quadm),其中m和a是大于1的正整数aϕ(m)=1
- RSA的数学基础
Wayne维基
概要RSA是一种非对称加密算法,非常普遍,主要涉及的数学知识互质欧拉函数欧拉定理互质概念:两个正整数,除了1以外没有其他公因子(公约数)。(补充:公因子同时能被两个数整数的整数,是这两个数的公因子,求最大公约数可以用辗转相除法)注意区分质数(素数prime)概念:质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。举例:7和20,20是不是质数,但是和7是互质数。互质相关结论:任
- 图论(2)——道路与回路
魔术考德
数据结构图论笔记算法
文章目录一、道路与回路有向道路/有向回路无向图的道路及道路的长度联通图弦定义定理极长初级道路扩大初级道路法二分图定义定理图的性质两点间距离,割点,割边二、欧拉道路与回路定义欧拉定理应用三、哈密顿道路与回路定义(哈密顿图)回路-引理哈密顿道路与回路-充分性定理1闭合图哈密顿道路与回路-充分性定理2例子哈密顿道路与回路-必要性定理一、道路与回路有向道路/有向回路如果P中的边没有重复出现,则分别称为简单
- 离散数学——图论
番茄元
基础知识python概率论机器学习
图论一、图的基本理论握手定理:每条边对顶点的度的贡献为2二、连通图、补图、偶图证明方法判定是否有圈常用方法:最长路法补图双图欧拉图欧拉闭迹:包含所有顶点所有边的闭迹。每个边只经过一次,但是顶点可以重复经过。欧拉图:包含欧拉闭迹的图。多重图多重图:带环图:伪图:欧拉定理:哈密顿图染色法:判断图不是哈密顿图图的表示:邻接矩阵带权图:相关问题三、树极小连通图树的中心生成树最小生成树割点、桥连通度、匹配明
- 数论(四)——欧拉函数
DearLife丶
#数学知识算法欧拉公式欧拉函数
目录欧拉函数用公式求欧拉函数筛法求欧拉函数欧拉定理欧拉函数定义:在数论中,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目。注:1.φ(1)=12.互质是公约数只有1的两个整数,叫做互质整数。公式:n分解质因数后:n=p1a1×p2a2×p3a3…pkak,(其中pi为质数)那么φ(n)=n×(1-1/p1)×(1-1/p2)×…×(1-1/pk)公式证明:思路:1.从1—n中去掉p
- 欧拉函数与欧拉定理
2301_78981471
算法学习记录笔记算法c++
文章目录AcWing873.欧拉函数题目链接欧拉函数欧拉函数的证明思路CODE时间复杂度分析AcWing874.筛法求欧拉函数题目链接问题分析与时间复杂度CODE思路欧拉定理AcWing873.欧拉函数题目链接https://www.acwing.com/activity/content/problem/content/942/欧拉函数对于正整数nnn,欧拉函数是小于或等于nnn的正整数中与nnn
- 算法基础课-数学知识
Andantex
ACwing算法课笔记算法
数学知识第四章数学知识数论质数约数欧拉函数欧拉定理与费马小定理拓展欧几里得定理裴蜀定理中国剩余定理快速幂高斯消元求组合数卡特兰数容斥原理博弈论Nim游戏SG函数第四章数学知识数论质数质数判定:试除法,枚举时只枚举i≤nii\leq\frac{n}{i}i≤in即可(这里是防止整数溢出所以没有算平方)分解质因数:试除法首先nnn中至多只包含一个大于n\sqrtnn的质因子所以仍然可以枚举i≤nii\
- DFS求解欧拉回路
嘻嘻哈哈Man
DFS
思路:利用欧拉定理判断出一个图存在欧拉通路或欧拉回路;选择一个正确的起始顶点,用DFS遍历所有的边(每条边只能遍历一次),走不通就回溯;在搜索前进的方向上将遍历过的边按顺序记录下来;这组边的排列就组成了一条欧拉通路或回路。参考欧拉回路原理:https://blog.csdn.net/PacosonSWJTU/article/details/50007847代码:https://blog.csdn.
- RSA-CRT 使用中国剩余定理CRT对RSA算法进行解密
小熊的学习笔记
密码学合集算法RSA中国剩余定理欧拉定理公钥加密算法
RSA-CRT前言一、中国剩余定理(CRT)二、欧拉定理三、RSA正常解密流程四、举例如下:前言使用中国剩余定理对RSA进行解密,可以提高RSA算法解密的速度。有关数论的一些基础知识可以参考以下文章:密码学基础知识-数论(从入门到放弃)一、中国剩余定理(CRT)设p和q是不同的质数,且n=p*q。对于任意(X1,x2),其中0≤x1
- RSA
ahr7882
同余:给定一个正整数m,如果两个整数a和b满足(a-b)能够被m整除,即(a-b)/m得到一个整数,那么就称整数ab对模m同余,记做a≡b(modn)RSA算法的参数构成:1)选择两个大素数p、q;2)计算n,n=pq和n的欧拉定理的值,ψ(n)=(p-1)(q-1)3)随机选择公钥e,e只需要满足1k-112)EME_PKCS1-v1_5encoding,3)RSAencryptionDecry
- 数论---欧拉定理,快速幂求逆元
seez
快速幂数论线性代数算法动态规划
欧拉定理内容:如果存在任意两个正整数a,n,满足a与n互质,那么,f(n)表示的是欧拉函数:1~n中与n互质的数个数证明:证明结束快速幂求逆元同余:给定一个正整数m,如果两个整数a,b满足(a-b)能够被m整除,那么可以认为a与b对模m同余,记为a同余b逆元:就是一个数的倒数,a/b(modn)==a*c(modn),c就是b的逆元c可以看为b的倒数,如果b特别大,就要把b-1换为c欧拉定理:费马
- 拓扑几何学
csuzhucong
几何学算法
目录一,欧拉定理1,平面图论图2,单连通多面体3,一般多面体一,欧拉定理1,平面图论图在一个联通无向图中,点数-边数+面数=1如:7-12+6=1如果把最外面的五边形外面也算作一个面,那就是点数-边数+面数=2,即V-E+F=2可以用数学归纳法证明:2,单连通多面体对于一个单连通多面体,点数-边数+面数=2如:正方体8-12+6=2证明:可以把多面体映射成图论图,直接利用图论图的结论即可。如正方体
- 课题学习(四)----四元数解法
中石油-Ping阎王
课题学习学习动态测量四元数
一、四元数解法 为了求解惯性导航的力学方程,姿态矩阵RbbR^b_{b}Rbb可以有姿态微分方程得到。其中,四元数是常用的方法,如下图所示,假设刚体在原点旋转,根据欧拉定理,运动坐标系(b系列)相对于导航坐标系(n系列)的方向,相当于b系绕等效轴旋转一个角度Θ。 用四元数Q=[q1q2q3q4]TQ=\begin{bmatrix}q1&q2&q3&q4\end{bmatrix}^TQ=[q1q
- 【古谷彻】算法模板(更新ing···)
古谷彻
算法c++学习算法竞赛
目录一、数学1、逆元(一)费马小定理/欧拉定理(快速幂)2、组合数(1)求组合数C(n,m)方法一:阶乘+逆元+快速幂求组合数方法二:记忆化搜索方法三:递推公式(2)组合数求概率3、高精度sqrt(1)二分法(2)递加递减4、快速幂5、欧拉函数方法一:埃氏筛方法二:欧拉筛6、线性筛7、质数判断8、欧拉常数9、线性基形式一:数组1、处理线性基2、最大异或和3、最小异或和形式二:容器二、数据结构1、并
- 数论专题(待填坑)
zhy_Learn
小程序wiresharkopenwrtswiftssl
最大公约数扩展欧几里得容斥原理欧拉函数埃氏筛法与欧拉筛法费马小定理欧拉定理威尔逊定理逆元中国剩余定理线性同余方程组原根大步小步算法Miller-Rabin测试Pollard_rho算法
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" {
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持