- 数论——扩展欧几里得算法
NOI_yzk
欧几里得&拓展欧几里得(Euclid&Extend-Euclid)欧几里得算法(Euclid)背景:欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。——百度百科代码:递推的代码是相当的简洁:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}分析:方法说了是辗转相除法,自然没有什么好介绍的了。。Fresh肯定会觉得这样递归下去会不会爆栈?实际上在
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- 拓展欧几里得法求逆元
DBWG
板子算法数据结构数学数论
板子:x即为最终答案,x可能为负数,加模数即可乘法逆元-OIWiki(oi-wiki.org)voidexgcd(inta,intb,int&x,int&y){if(b==0){x=1,y=0;return;}exgcd(b,a%b,y,x);y-=a/b*x;}使用:exgcd(a,n+1,x,y);//x就是逆元while(x<=0)x+=n+1;原理:最大公约数-OIWiki(oi-wiki
- 专题讲座3 数论+博弈论 学习心得
繁水682
专题讲座c++
先放一下眼泪学长的精华内容汇总。PPT笔记汇总:【小组专题四:素数】pi(x),狄利克雷关于等差数列中素数定理,梅森素数,素数证明_溢流眼泪的博客-CSDN博客【算法讲2:拓展欧几里得(简略讲)】求解ax+by=c_溢流眼泪的博客-CSDN博客中国剩余定理学习笔记-MashiroSky-博客园【训练题23:中国剩余定理】猜数字|P3868[TJOI2009]_溢流眼泪的博客-CSDN博客(扩展)B
- 数论-乘法逆元【裴蜀定理+欧拉定理/费马小定理】
舍舍发抖
数论算法
具体逆元相关看这个博客,更详细裴蜀定理定义:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。(根据拓展欧几里得定理得出ax+by=gcd(a,b))这篇博客提到拓展欧几里的公式及推导这篇也参考一下一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1证明这里就不详细说了,参考博客:http
- 费马小定理&费马大定理
Wkzlike
算法
(1)费马小定理结论:结论是若存在整数a,p且gcd(a,p)=1,即二者互为质数,则有a(p-1)≡1(modp)。(这里的≡指的是恒等于,a(p-1)≡1(modp)是指a的p-1次幂取模与1取模恒等),再进一步就是ap≡a(modp)。继续学习:中国剩余定理、拓展欧几里得(exgcd)、求除法逆元、费马小定理(2)费马大定理结论:又被称为“费马最后的定理”,常见的表述为当整数n>2时,关于x
- 拓展欧几里得和小费马定理求逆元以及推导(学习总结)
无_问
数论学习gcd
相关概念引入:逆元:假如ax≡1(modm)则称a关于1模m的逆元为x。当然了x有解的前提是gcd(a,m)=1。小费马定理:p为质数,ap≡a(modp),若gcd(a,p)=1,则a(p-1)≡1(modp)-------a*a(p-2)≡1(modp)所以a(p-2)为a的逆元;结合快速幂求a(p-2)longlongquick_pow(inta,intb){longlongsum=1;wh
- 大数据安全 | 期末复习(上)| 补档
啦啦右一
#大数据安全大数据与数据分析单例模式
文章目录概述⭐️大数据的定义、来源、特点大数据安全的含义大数据安全威胁保障大数据安全采集、存储、挖掘环节的安全技术大数据用于安全隐私的定义、属性、分类、保护、面临威胁安全基本概念安全需求及对应的安全事件古典密码学里程碑事件扩散和混淆的概念攻击的分类模运算移位加密仿射加密维吉尼亚密码DES混淆与扩散Feistel加密DES密钥生成DES流程数论欧几里得算法拓展欧几里得算法欧拉函数有限域运算AES密钥
- 【算法总结】欧几里得算法与拓展欧几里得算法 小结
荷叶田田_
学习笔记与用法总结
拓展欧几里得算法1、欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}2、拓展的欧几里德算法:对于不完全为0的非负整数a,b,gcd(a,b)表示a,b的最大公约数,必然存在整数对x,y,使得gcd(a,b)=ax+by。intgcd(inta,intb,int&x,int&y){if(b==0){
- 《洛谷深入浅出进阶篇》 欧几里得算法,裴蜀定理,拓展欧几里得算法————洛谷P1516 青蛙的约会
louisdlee.
洛谷深入浅出进阶篇算法数论c++gcd拓展欧几里得洛谷深入浅出进阶篇
本文章内容:欧几里得算法:gcd(a,b)=gcd(b,a%b)由于篇幅问题,在这里就不加以证明,可以上b站自己搜一下。由欧几里得算法我们可以很清楚的知道,a,b的最大公约数,等于b,a%b的最大公约数裴蜀定理对于任意一对整数a,b,存在整数对(x,y)使不定方程ax+by=gcd(a,b)有解。由裴蜀定理引出的定理:若对于任意一对整数a,b,存在整数对(x,y)使不定方程ax+by=c有解,那么
- 算法基础课-数学知识
Andantex
ACwing算法课笔记算法
数学知识第四章数学知识数论质数约数欧拉函数欧拉定理与费马小定理拓展欧几里得定理裴蜀定理中国剩余定理快速幂高斯消元求组合数卡特兰数容斥原理博弈论Nim游戏SG函数第四章数学知识数论质数质数判定:试除法,枚举时只枚举i≤nii\leq\frac{n}{i}i≤in即可(这里是防止整数溢出所以没有算平方)分解质因数:试除法首先nnn中至多只包含一个大于n\sqrtnn的质因子所以仍然可以枚举i≤nii\
- 同余-费马小定理-乘法逆元与线性同余方程
litian355
数学相关算法
update1:初等数论部分(是对下面拓展欧几里得算法的铺垫):update2:由于第一开始学习理解不够深入,出现众多错误,现在看来真是误人子弟(实在太烂了),现在修改了一些错误,同时润滑了一下语言。线性方程ax+by=gcd(a,b)的解:假设特解(x0,y0)是方程组的一组解,d=gcd(a,b),那么通解就是x=x0+b/d*k,y=y0-a/d*k;例如10x+35y=5,的一组特解(-3
- RSA 加密算法在C++中的实现 面向初学者(附代码)
EUREKA-X
c++算法密码学网络安全
概述博文的一,二部分为基础知识的铺垫。分别从密码学,数论两个方面为理解RSA算法做好了准备。第三部分是对RSA加密过程的具体介绍,主要涉及其密钥对(key-pair)的获取。前三个部分与编程实践无关,可以当作独立的关于RSA加密算法的介绍。第四部分开始介绍在编程层面实现RSA算法的基础知识,主要涉及一些算法,如拓展欧几里得算法,米勒-拉宾素性检验算法,是为C++中实现RSA加密所作的铺垫。第五部分
- 裴蜀定理-拓展欧几里得算法--夏令营
yyt_cdeyyds
算法
题目知识点1.裴蜀定理:欧几里得算法=gcd=辗转相除法拓展欧几里得算法=exgcd=裴蜀定理2.证明:3..代码:intexgcd(inta,intb,int&x,int&y){if(!b){x=1,y=0;returna;}intd=exgcd(b,a%b,y,x);y-=a/b*x;returnd;}答案#include#include#includeusingnamespacestd;in
- CCPC桂林E - Draw a triangle
Knight840
c++算法开发语言
题意:给出两点,求在网格点上找第三点满足构成三角形正数面积最小思路:两个向量(a,b),(x,y)面积表达(-bx+ay)/2,则题意变为求(-bx+ay)表达式的最小解,斐蜀定理可知,一个二元一次方程的最小解c为形如ax+by这样的式子中的a,b的最大公因数的倍数,所以只需根据拓展欧几里得法求x,y/*题意:给出两点,求在网格点上找第三点满足构成三角形正数面积最小思路:两个向量(a,b),(x,
- Python算法设计 - 拓展欧几里得算法
小鸿的摸鱼日常
python算法设计算法python
目录一、拓展欧几里得算法二、Python算法实现三、作者Info一、拓展欧几里得算法扩展欧几里德算法是数论中最经典的算法之一,其目的用来解决不定方程。用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=GCD(a,b)什么是不定方程?不定方程(丢番图方程)是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等)的方程或方程组。二、Python算法实现defg
- 【总结】不定方程ax+by=c的解
仰望星空的蚂蚁
先解方程ax+by=gcd(a,b)的特解,再还原到原方程,写出通解方法:拓展欧几里得(递归降系数)首先对于ax+by=gcd(a,b),当b=0时,x=1,y=0是一组解(递归算法出口)对于一般情况:ax1+by1=gcd(a,b)bx2+(a%b)y2=gcd(b,a%b)系数a,b降低了(最终a%b为0),注意观察x1,y1,x2,y2数量关系(假定求得了x2,y2)因为gcd(a,b)=g
- 拓展欧几里得证明
不给赞就别想跑哼
看了许久书终于从似懂非懂走了出来设ax+by=gcd(a,b),解出符合条件的x,y;当b=0时,很显然有一组必然解,x=1,y=0,即1a+00=gcd(a,b)=a;即我们讨论b!=0的情况;ax+by=gcd(a,b)=gcd(b,a%b);令一组解x1,y1使得x1b+y1(a%b)=gcd(b,a%b)=gcd(a,b)=ax+by;a/b=k…r,k=a/b下取整,所以a%b=a-(a
- 乘法逆元 +数论分块 +平方和公式
Star_.
蓝桥杯java开发语言
年后准备学习啦,开学还得准备考试。乘法逆元:因为涉及到除法,所以取余这个操作就错误。所以如果我们要求(a/b)%mod,我们可以假设(a/b)%mod=a*c%mod那么c就是b的逆元。怎么求逆元呢,其实有很多方法,这里我先学习了两种比较常用的方法。逆元的定义给定正整数a,p,如果有,且a与p互质,则称x的最小正整数解为a模p的逆元。方法一:拓展欧几里得算法不要求模p为质数,所以我一般会用这种方法
- RSA加密算法 python实现
特务别iDD
python
基于python实现rsa加密算法,并生成可执行程序exeimportPySimpleGUIassg#拓展欧几里得算法求最大公约数defex_gcd(a,b,arr):ifb==0:arr[0]=1arr[1]=0returnar=ex_gcd(b,a%b,arr)tmp=arr[0]arr[0]=arr[1]arr[1]=tmp-int(a/b)*arr[1]returnr#将最大公因数回代辗转
- 简述逆元+两种算法
circoding
2019hpu暑期集训逆元
逆元:用于计算式子(a/b)modp,当b十分大的时候,可以利用b的逆元inv(b),原式即为(a*inv(b)modp)。一个类似于b的倒数的家伙,要注意的是b的逆元并不唯一,而且要说成是b模p的情况下逆元是多少。逆元不是一定存在的,必须是b与p互质(两者公因数仅有1)才存在逆元。求解逆元的方法,目前博主学了两个:利用费马小定理快速幂求逆元。利用拓展欧几里得算法求逆元。1.利用费马小定理求解逆元
- 组合数取模算法(杨辉三角+拓展欧几里得求逆元+费马小定理求逆元+阶乘逆元递推)
retrogogogo
ACM数论算法组合数拓展欧几里得快速幂费马小定理
组合数算法简述:杨辉三角形+拓展欧几里得求逆元+费马小定理求逆元+阶乘逆元递推组合数基本公式杨辉三角形法逆元法-1.拓展欧几里得求逆元-2.费马小定理求逆元-3.阶乘逆元递推-4.逆元法组合数取模总结模板前言: 在很多问题中都需要计算组合数,在小规模计算中我们可以直接使用组合数公式稍加算法优化进行计算,但在大规模取模计算时往往需要更加快速的算法,接下来主要介绍杨辉三角形法、逆元法(拓欧和费马小定
- 数论—模运算的逆元
十甫Com
数论逆元模运算拓展欧几里德费马小定理
目录有关模运算定义运算规则逆元定义使用方法求逆元的方法枚举法拓展欧几里得(Extend-Eculid)费马小定理(Fermat'slittletheorem)注意有关模运算在信息学竞赛中,当答案过于庞大的时候,我们经常会使用到模运算(ModuloOperation)来缩小答案的范围,以便输出计算得出的答案。定义给定一个正整数p,任意一个整数n,那么一定存在等式:n=k*p+r;其中k、r是整数,且
- 深入浅出RSA在CTF中的攻击套路
CTF小白
CTF
0x01前言本文对RSA中常用的模逆运算、欧几里得、拓展欧几里得、中国剩余定理等算法不展开作详细介绍,仅对遇到的CTF题的攻击方式,以及使用到的这些算法的python实现进行介绍。目的是让大家能轻松解决RSA在CTF中的套路题目。0x02RSA介绍介绍首先,我这边就不放冗长的百度百科的东西了,我概括一下我自己对RSA的看法。RSA是一种算法,并且广泛应用于现代,用于保密通信。RSA算法涉及三个参数
- 2021-11-13(每周总结)
killer_queen4804
c++笔记算法动态规划算法数学
这一星期做了点背包,主要还是学了下数论gcd,lcm,拓展欧几里得,逆元(没大做题目,只是看了遍,也没有明白书上的例题是怎样利用逆元的),素数和素数筛选的方法,做的题还是不够多,只是对素数筛有点印象,还看了点组合数学,刚开了个头luogup4138排序就按钩数从大到小排,之后就是01背包了,把挂钩数作为容量,并且如果容量小于a[i]的话,就强行认为是1,转移方程为dp[i][j]=max(dp[i
- ACM数学题目2 同余方程(拓展欧几里得算法)
大金枪鱼罐头
ACM数学题目acm竞赛算法数学递归算法c++
声明:题目来源:https://www.luogu.com.cn/problem/P1082题目描述求关于xxx的同余方程ax≡1modbax\equiv1\textrm{mod}bax≡1modb的最小正整数解。输入格式一行,包含两个正整数a,ba,ba,b用一个空格隔开。输出格式一个正整数x0x_0x0,即最小正整数解。输入数据保证一定有解。输入输出样例输入#1310输出#17说明/提示【数据
- 复习小结--小康迷糊了--21.4.21
小康迷糊了
算法
小康迷糊了的复习小结1.字典树2.线段树3.KMP算法4.字符串哈希5.二分图匹配6.最长递增子序列7.最长公共子串/子序列8.拓展欧几里得9.快速幂10.组合数学问题(卡特兰数)11.树的直径12.最短路问题13.最小生成树14.并查集15.欧拉回路16.连通块问题17.多源bfs问题18.差分,二分19.前缀和1.字典树模板#includeusingnamespacestd;constintN
- 密码学期末计算题复习
带问号的小朋友
密码学密码学算法线性代数矩阵
主要三大块目录1.古典密码移位密码:代换密码欧拉函数:乘法逆元用拓展欧几里得求解详细过程:群Zm内所有元素关于模26的乘法逆元如下:仿射密码:希尔密码:定义在Zm上的矩阵求逆:2.对称密码体制AES加密的工作模式3.非对称密码体制拓展欧几里得求解同余方程组本原元求解RSA算法过程ElGamal加密算法1.古典密码移位密码:E(x)=(x+K)mod26D(x)=(x-K)mod26代换密码是指先建
- ACM Weekly 4(待修改)
C_eeking
ACM训练
ACMWeekly4涉及的知识点GCD与LCMGCD和LCM质因数分解与互质拓展欧几里得算法拓展欧几里得应用算数基本定理及其推论算数基本定理推论1:求约数个数推论2:求约数之和欧拉函数同余费马小定理欧拉定理乘法逆元难题解析拓展ICPC线上测试赛中国剩余定理大数小数定理PollardRho算法涉及的知识点第四周练习主要涉及GCD与LCM(欧几里得、质因数分解、互质的概念)、算数基本定理及其推论、,欧
- Strange Optimization
xzx9
数论牛客
题目意思是要求在t固定的情况下,i,j任意取值,求得f(t)的所有最小值中的最大值。对于i/n-j/m而言,根据拓展欧几里得的有解的条件,那么它可以表示gcd(n,m)/(nm)的任意倍数,那么当t是固定的时,t到和它最近的两个gcd(n,m)/(nm)的倍数之间的距离中的最小值必然小于等于gcd(n,m)/2*(nm),所以,要求最大的f(t),那么其值应该为gcd(n,m)/2(nm),若分子
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end