- 数论基础知识(整除,质数,合数,质因数,取模,同余)
acmakb
蓝桥杯c++数论算法
整除整除的定义:设a,b∈Z,a≠0。如果q∈Z,使得b=aq,那么就说b可被a整除,记作a|b。若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),即b∣a,读作"b整除a”或“a能被b整除”,注意这两句话的前后主语。举例:15/5=0说明15可以被5整除,记作5|15常用性质:如果a整除b,并且b整除c,那么a整除c若a|b,b|c则>a|c20/5=44/2
- C语言-算法-数论基础
SpongeG
C语言-算法算法c语言开发语言
【模板】快速幂题目描述给你三个整数a,b,pa,b,pa,b,p,求ab mod pa^b\bmodpabmodp。输入格式输入只有一行三个整数,分别代表a,b,pa,b,pa,b,p。输出格式输出一行一个字符串a^bmodp=s,其中a,b,pa,b,pa,b,p分别为题目给定的值,sss为运算结果。样例#1样例输入#12109样例输出#12^10mod9=7提示样例解释210=10242^{1
- 【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】
不是AI
C语言密码学算法web安全密码学c语言
实验三、数论基础(下)一、实验内容1、中国剩余定理(ChineseRemainderTheorem)(1)、算法原理m1,m2,…mk是一组两两互素的正整数,且M=m1·m2·…·mk为它们的乘积,则如下的同余方程组:x==a1(modm1)x==a2(modm2)…x==ak(modmk)对于模M有唯一的解x=(M·e1·a1/m1+M·e2·a2/m2+…+M·ek·ak/mk)(modM)其
- 【网络安全】【密码学】【北京航空航天大学】实验二、数论基础(中)【C语言和Java实现】
不是AI
C语言Java密码学密码学c语言java
实验二、数论基础(中)一、实验内容1、扩展欧几里得算法(ExtendedEuclid’sAlgorithm)(1)、算法原理已知整数a,b,扩展的欧几里得算法可以在求得a,b的最大公约数的同时,找到一对整数x,y,使得a,b,x,y满足如下等式:ax+by=d=gcd(a,b),其中gcd(a,b)为a和b的最大公约数。(2)、算法流程本算法的大致流程如下图所示:(3)算法的代码实现(C语言)#i
- 【网络安全】【密码学】【北京航空航天大学】实验一、数论基础(上)【C语言和Java实现】
不是AI
C语言密码学Javaweb安全密码学c语言
实验一、数论基础(上)一、实验目的1、通过本次实验,熟悉相关的编程环境,为后续的实验做好铺垫;2、回顾数论学科中的重要基本算法,并加深对其的理解,为本学期密码学理论及实验课程打下良好的基础。二、实验原理数论主要研究的是整数的运算及性质,许多常用的加密算法都用到了数论知识。三、实验环境本次实验的实验环境为Dev-C++5.11,以及IntelliJIDEAIDE。四、实验内容1、厄拉多塞筛算法(Si
- 洛谷普及组P1044栈,题目讲解(无数论基础,纯打表找规律)
Colinnian
深度优先算法题目讲解
[NOIP2003普及组]栈-洛谷我先写了个打表的代码,写了一个小时,o(╥﹏╥)o只能说我真不擅长dfs。intn;std::unordered_mapmap;voiddfs(std::vector&a,intstep,std::stackp,std::strings){if(step==n+1){while(!p.empty()){s.push_back('0'+p.top());p.pop(
- 初等数论基础
satadriver
数学算法抽象代数
欧拉函数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉函数\phi(x),其中x是正整数,函数的值是从0到x-1之间与x互为质数的个数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉定理aϕ(m)=1(modm),其中m和a是大于1的正整数a^{\phi(m)}=1(mod\quadm),其中m和a是大于1的正整数aϕ(m)=1
- 【考研—密码学数论基础】环、群、域、多项式运算
GoesM
考研--密码学与网络安全c++数论考研密码学抽象代数
注:下述笔记根据学习通公开课程《数学的思维方式与创新》,部分内容并非严谨数学定义,个人理解居多。注2:第一遍学的时候理解得太片面了,面试被问到了才意识到理解得有问题,特此重新更正Pre:理解一些问题群?环?域?这些概念是在聊什么?它们都相当于是一种特殊的集合。抽象代数中的加法?乘法?本质是:定义新运算。它其实不同于我们平时知道的乘法和加法,但在逻辑上有一些相似之处。单位元:在集合中作乘法运算,类似
- 数论基础之模运算
wxhyaoshunyutang
抽象代数
数论基础之模运算这篇罗列一下模运算的定义,即最基本的运算定理首先回顾一下整除的性质a是b的倍数=b整除a=b|a定理:对任意整数a和b,b≠0b\neq0b=0,唯一存在一对整数q和r,使得0≤\leq≤r≤\leq≤|b|,a=qb+r整数的基本性质性质1.若a|b,b|c,则a|c性质2.若a|b,则a|bc性质3.若a|b,a|c,则a|b+c性质4.若a整除b1,b2…bn,则a|Λ1\
- 数论基础模板-----数论成长之路
gzr2018
算法竞赛
最大公约数gcdgcd(f[n],f[m])=f[gcd(n,m)]intgcd(inta,intb)//a大于b{returna%b==0?b:gcd(b,a%b);}ViewCode最小公倍数LcmintLcm(inta,intb){returna/gcd(a,b)*b;}ViewCodeint输入输出挂inlineintread(){intx=0,f=1;charc=getchar();wh
- 约数——数论算法
miracle1114
数论算法c++
数论基础知识本篇文章主要讲述数论中基础算法约数部分的内容提示:本篇文章代码参考ACWing文章目录数论基础知识一、约数是什么?二、约数的相关算法1.枚举出某一个数的所有约数2.求约数的个数3.最大公约数4.约数之和!!:以下是本篇文章正文内容,下面案例可供参考一、约数是什么?约数,又叫因数。整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,
- rsa加密算法_CTF现代密码之RSA之数论
weixin_39817176
rsa加密算法rsa加密算法实现rsa算法pythonrsa算法代码凯撒密码加密算法python
亲爱的,关注我吧10/30文章共计2345个词预计阅读8分钟如果有伙伴发现这篇文章小编之前发过不要惊讶哦是对文章做了一些更正呀来和我一起阅读吧前言:在CTF的密码题目中,RSA以其加密算法之多且应用之广泛,所以在比赛中是最常见的题目。学习密码学并不难,但首先得打好数学基础,并在攻破密码的学习之路上持之以恒。今天我们就来打开RSA加密世界的第一扇门《数论》。数论基础:1.素数2.公约数与公倍数3.欧
- 数论基础(III):新兴学科及前沿数学。
luj_1768
算法经验分享数据库c语言开发语言
近现代的数论研究,一般是与高能物理、天体物理、生物医药、材料工程、计算工程,相互影响、相互促进、同步进化的。其理论基础大多根植于香浓底论、七桥问题。高数、高代、线数,的学科建设与学科融合是当前数学研修的又一主流方向。这与社会对计算方法、解算方案的需求有关。计算工具的发展,为群论、集合概率论、统计分布理论、的应用和发展,提供了条件、带来了机遇。信息论、人工智能、元宇宙,则是当前学科发展的综合学科和前
- 算法比赛备赛笔记
开longlong了吗?
算法笔记
个人觉得,对于计算机专业的大学生来说,算法竞赛应该是性价比最高的比赛了。除了icpc和ccpc这两个比较难拿国奖之外,其他的比赛获奖难度并不大,比如蓝桥杯、天梯赛、睿抗,认真学习一年算法,水个国奖完全没问题。本篇博客是我在一年多的学习和比赛中所做的笔记,记录的内容都是我认为在比赛中高频次出现的算法,而且除了线段树之外都是比较基础的算法。应该会不断更新吧。一.算法1.数论基础循环小数转换为分数转换方
- 数论基础。
luj_1768
算法数据库c语言经验分享开发语言
许多学习软件的同学都非常希望自己能成为算法大师,事实上,所有的算法都源于数论。这里,将简单的介绍一些数论有关的知识:对几大基础数列的解读是最基本、最关键的数论修道。素数分析、质因数分解、和式分组(二元一次方程的整数解有关的分析方案)。素数分析、密码学。素数分析、关组分析。素数分析、杂论。超越数分析、PI,EE分析。根式分析(二次根式,三次根式)。一元多次方程的解分析,一元二次方程的解分析。一元高次
- 密码学:数论基础
PlyTools
符号表符号说明衍生示例有理数,即,整数集,即,表示正整数集,表示负整数集自然数集,即也表示正整数集实数集,即,同余于模有限群的阶,的最大公约数欧拉函数群生成元环由生成的主理想域表示模n形成的有限域,为素数1模运算(ModularArithmetic)1.1模约化(ModularReduction)如果我们用代替,称为此过程称为模约化,而代表了除以的余数1.2同余式(Congruences)对于,如
- RSA加密原理详解,以及RSA中的数论基础
Demonslzh
网络安全算法密码学安全
文章目录1.RSA加密算法介绍2.RSA密钥生成3.RSA加密和解密4.RSA的安全性5.涉及到的数论基础5.1.模的逆元5.1.1.扩展欧几里得算法计算模逆元5.1.2.费马小定理计算模逆元5.2欧拉函数5.3离散对数离散对数问题6.RSA加密的安全性1.RSA加密算法介绍RSA加密是一种非对称加密算法,由罗纳德·李维斯特(RonRivest)、阿迪·萨莫尔(AdiShamir)和伦纳德·阿德曼
- CSDN竞赛7期题解
昂昂累世士
其它容斥原理dfsgcd
总结这次竞赛的题目质量相对之前竞赛来说是有明显进步的,由两道经典面试题加上两道中等难度题目构成。前两道的受众可能是初学算法的同学吧,对于学算法的同学来说,前两道题没有在五分钟内AC都是不合格的。当然,偷懒这么久没学算法的我,也花了数倍的时间才ac前两道。T3主要考察问题的分析能力,实现不难。T4考察数论基础,容斥原理和GCD,注意下细节也是不难ac的。题目列表1.奇偶排序题目描述给定一个存放整数的
- 【数论基础】
萌新,菜
c++图论算法
1.质数质数筛(埃氏筛+线性筛)//线性筛#include#includeusingnamespacestd;constintN=1000010;intprimes[N],cnt;boolst[N];voidget_primes(intn){for(inti=2;i>n;get_primes(n);cout#include#include#includeusingnamespacestd;type
- 密码学基础学习
宫jx
首先声明符号:C密文,P明文,K密钥,EK加密,DK解密。一。传统密码学。基本是移位和变换,比如凯撒密码,维吉尼亚密码,hill密码等。(1)凯撒密码,密钥空间是26。加密C=(p+k)mod26。解密P=(c-k)mod26。(2)单表置换。n个元素有n!个置换(3)维吉尼亚密码。公式太复杂不想写。。。二。数论基础知识,有限域的运算,加法是按位异或,乘法比较有意思。高级加密标准(AES)就是依赖
- 【ctf-3】数论基础+Crypto初步
三金C_C
密码学算法
本周继续学习了公钥密码学的数论基础,最近事情实在太多了只能海绵里挤时间了。当然关于数论这个部分还是非常重要的,不仅实在密码学部分还在是在算法设计部分都至关重要的,本人也还没有深入接触过python,php,对于一些脚本处理大多还是用的C++,这一点日后需要提高,很多关于密码的解法大多是用python的。同时本周也进行了Cyrpto的题目练习,确实让我大开了眼界,认识了很多加密方式,对于此可以看总结
- 【蓝桥杯Java组】数论基础—素数筛、最大公约数、最小公倍数
Mymel_晗
蓝桥杯蓝桥杯leetcode算法Java数论
前言:一学就会的小技巧(一):前缀和一学就会的小技巧(二):差分一学就会的小技巧(三):快速幂一学就会的小技巧(四):龟速乘一学就会的小技巧(五):矩阵快速幂一学就会的小技巧(六):矩阵快速幂的应用省赛真题—K倍区间(前缀和,数学,思维)☕☕在解决编程题时,除了要对算法本身有足够的了解,往往还需要掌握一些基础数论。☕☕常用的数论有:最大公约数最小公倍数判断两数互质素数筛下面逐一给出代码模板~1.
- 【笔记】莫比乌斯反演(前置知识)
inferior_hjx
笔记c++算法
文章目录前言前置知识模定义性质整除定义性质同余定义性质逆元定义性质积性函数定义常见的积性函数证明欧拉函数为积性函数例1:欧拉函数线性筛例2:莫比乌斯函数线性筛前言由于文章正文太长,不得不分几篇博客。本篇为数论基础内容,学习过数论的可以跳过。最近学了莫比乌斯反演和一点狄利克雷卷积,感觉很难,也是看了很多博客才有点明,写一篇博客帮助自己理解。由于数论大多基于正整数讨论,故除特殊说明外,本文所有变量都为
- 数论
weixin_30381317
c/c++数据结构与算法
目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b.筛选法
- 除等数论
じ☆夏妮国婷☆じ
算法除等数论
除等数论目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b
- 初等数论
YinJianxiang
数论
转自:http://cppblog.com/menjitianya/archive/2015/12/02/212395.html一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗
- “kuangbin带你飞”专题计划——专题十四:数论基础
I_have_a_world
#ACM_数论#ACM_专项训练数论基础数论kuangbin带你飞
写在前面1.目前还没啥写的。开始时间:2021-05-13(其实博客上看得到该博客创建时间的)2.上一个专题刷的是网络流(博客总结),属于第一次接触。本来想的是一周特别高效,然后一周略划水,结果是五一期间高效,工作日有课略划水。还好,每个题都写了博客,收获很多3.这个专题,我想应该每个题都涉及了不一样的知识吧。也建议每个题都写博客4.写个感受?有与高四刷书的感觉了,激动,期待,轻松辛苦,有时候一本
- 数学基础知识回顾(二):集合论
Ali forever
图论拓扑学5G信息与通信
集合论前言一、数论基础与计数基础1.幂集2.唯一析因定理(算术基本定理)3.贝祖定理4.同余定理5.鸽巢原理(抽屉原理)1.几个例子2.一般性鸽巢原理二、二元关系1.关系及其表示1.笛卡尔积2.二元关系的定义3.二元关系的一些概念2.关系的性质3.关系的闭包4.等价关系与集合的划分三、函数与映射1.单射,满射与双射1.定义2.与关系矩阵和关系图的关系3.函数的复合4.几种常见函数5.函数的势四、偏
- 【ctf】Crypto初步基础概要
三金C_C
密码学ctf学习周报pythoncrypto网络安全密码学
在CTF界中,真正的Crypto高手只要一张纸一只笔以及Python环境就可以称霸全场了。(虽然是玩笑话但却是事实)当然了,密码学是整个网络安全的基础,不管你是否参加ctf类的比赛,对于密码的常识也都需要掌握,希望接下来的内容对你有所收获,也希望可以进行学习和交流,另外欢迎各位师傅的指点,鄙人不才,还请各位师傅多包涵。一个好的算法手或者数论基础极强的人经过编程培养定是优秀的Crypto选手,所以算
- 密码学-数论基础
一颗菜籽
笔记算法网络安全
数论基础整除性和带余除法整除性:b整除a:b|a、b是a的一个因子性质:a|1,a=+(-)1带余除法:a=qn+r,|r|=b>0anda%b!=0)]模运算a除以n所得的余数为a模n,记为amodn,n成为模数,ex:余数与模数同号同余:(amodn)=(bmodn)称为a和b是模n同余,记为a=b(modn)性质:相减的两个数可被模数整除,则这两个数同余交换律传递性模算数运算1、2、3可以这
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发