- [ABC304F] Shift Table(莫比乌斯反演)
yusen_123
数论算法图论c++
题目:https://www.luogu.com.cn/problem/AT_abc304_f思路:容斥原理,莫比乌斯反演应该都可以,我用的是莫比乌斯反演。注意:最好用longlong类型;代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include
- Lcms(莫比乌斯反演)
yusen_123
数论c++算法
题目路径:https://www.luogu.com.cn/problem/AT_agc038_c思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;c
- Array Equalizer(莫比乌斯反演)
yusen_123
数论算法c++
1605E-ArrayEqualizer思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;constintN=2e5+100;#defineLLlon
- 最小生成树个数
兔猪猪兔
矩阵算法矩阵树最小生成树计数
今天练习最小生成树时做到这样一个题1150.最小生成树计数-AcWing题库一个很裸的求最小生成树个数的题,搜题解发现矩阵树来求解很好,关于图论的结论一般证明都非常麻烦,而且我觉得会用就好,这里附上大佬的证明,矩阵树定理及其无向图形式证明--洛谷博客,我们只取其中的结论部分首先,定义一些东西对于无向图,定义D(G)为图G的度数矩阵,其中:(deg是度数的意思)定义A(G)为图G的邻接矩阵,其中:t
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 狄利克雷卷积及常见函数与莫比乌斯反演
溶解不讲嘿
数论线性代数笔记
QwQ文章目前没有题目,只有理论知识狄利克雷卷积狄利克雷卷积(DirichletConvolution)在解析数论中是一个非常重要的工具.使用狄利克雷卷积可以很方便地推出一些重要函数和公式,它在信息学竞赛和解析数论中至关重要.狄利克雷卷积是定义在数论函数间的二元运算.数论函数,是指定义域为N\mathbb{N}N(自然数),值域为C\mathbb{C}C(复数)的一类函数,每个数论函数可以视为复数
- 莫比乌斯反演(acwing2702)
yusen_123
数论算法
对于给出的n�个询问,每次求有多少个数对(x,y)(�,�),满足a≤x≤b,c≤y≤d�≤�≤�,�≤�≤�,且gcd(x,y)=kgcd(�,�)=�,gcd(x,y)gcd(�,�)函数为x�和y�的最大公约数。输入格式第一行一个整数n�。接下来n�行每行五个整数,分别表示a、b、c、d、k�、�、�、�、�。输出格式共n�行,每行一个整数表示满足要求的数对(x,y)(�,�)的个数。数据范
- 洛谷p1829(莫比乌斯反演)
yusen_123
数论c++算法数据结构
思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#includeusingnamespacestd;constdoubleeps=1e-8;constintN=1e7+10;constlonglongmod=20101009;#defineLLlonglongintpre[N],st[N];intn,cn,m;LLmu[N];
- P3704数字表格(莫比乌斯反演)
yusen_123
数论算法
题目背景Doris刚刚学习了fibonacci数列。用fi表示数列的第i项,那么0=0,1=1f0=0,f1=1fn=fn−1+fn−2,n≥2题目描述Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是gcd(i,j),其中gcd(i,j)表示i,j的最大公约数。Doris的表格中共有n×m个数,她想知道这些数的乘积是多少。答案对109+7取模。输入格式本题单个测试点内
- BZOJ 2440 完全平方数 (容斥+莫比乌斯反演+二分)
_TCgogogo_
数论二分/三分/两点法组合数学BZOJ莫比乌斯反演容斥二分
2440:[中山市选2011]完全平方数TimeLimit:10SecMemoryLimit:128MBSubmit:1673Solved:799[Submit][Status][Discuss]Description小X自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而这丝毫不影响他对其他数的热爱。这天是小X的生日,
- 《算法竞赛进阶指南》------数论习题篇1
axtices
数论算法数论
文章目录练习9:XORBZOJ2115(*线性基。求图中异或和,可谓经典中的经典)练习10:新Nim游戏BZOJ3105(*NIM进阶版NIM博弈+线性基)练习11:排列计数BZOJ4517(*错位排序)练习12:SkyCode(*容斥原理$莫比乌斯反演经典)练习16魔法珠CH3B16(SG博弈)练习17:GeorgiaandBob(*NIM博弈三定理)**错误思路**:**NIM博弈三定理**:
- YYHS-NOIP模拟赛-gcd
weixin_33845477
题解这道题题解里说用莫比乌斯反演做(我这个蒟蒻怎么会做呢)但是不会,所以我们另想方法,这里我们用容斥来做我们先把500000以内的所有质数筛出来每次读入编号的时候,先把编号对应的这个数分解质因数然后我们dfs枚举这个数的质因子取或不取,我们用t来表示取的质因子个数,如果t为奇数,ans就加,反之就减(容斥原理)1#include2#defineN2000053#defineM5000054#def
- 2019.6.summary
LMB_001
刷题总结刷题总结
2019.6.1BZOJ3028:食物生成函数题,母函数乘起来就好了BZOJ3544:[ONTAK2010]CreativeAccounting嗯,就是可以用set维护前缀和,取后继或最小数贪心就好啦BZOJ2820:YY的GCD莫比乌斯反演BZOJ4173:数学https://blog.csdn.net/zhhx2001/article/details/52300924由这个blog里的证明我们
- 【学习笔记】[ABC323G] Inversion of Tree
仰望星空的蚂蚁
线性代数学习笔记
前置知识:矩阵树定理,特征多项式省流:板子缝合题。可以复习一下线性代数的基本知识。定义Pu>PvP_u>P_vPu>Pv的边价值为xxx,Pun>n>n就寄了。因为都是板子,所以建议多看一下代码。注意行和列都要进行操作。复杂度O(n3)O(n^3)O(n3)。#include#definelllonglong#definepbpush_back#definefifirst#defineseseco
- 莫比乌斯函数
林苏泽
数论
目录前导积性函数莫比乌斯函数莫比乌斯反演莫比乌斯反演定理莫比乌斯反演定理证明莫比乌斯反演另一性质(与欧拉函数有关)前导要学习莫比乌斯函数需要学习到积性函数,深度理解欧拉筛。先说说什么是积性函数吧。积性函数其实积性函数非常好理解,定义积性函数:若gcd(a,b)=1,且满足f(ab)=f(a)f(b),则称f(x)为积性函数完全积性函数:对于任意正整数a,b,都满足f(ab)=f(a)f(b),则称
- 积性函数及其初级应用
SMT0x400
学习算法数学
积性函数及其初级应用垃圾博客,我本地LaTeX挂了,艹大量内容和入门方式都参考了莫比乌斯反演与数论函数。感谢CMD大爷!0xFF前置知识1.质数及其判定,质因数及其分解小学课本里面讲过质数的定义了,不细讲。分解质因数也是基本功。2.筛法同学们想必都会埃氏筛法吧,即对于每一个质数枚举其倍数筛除整个值域内的所有数。如果你学得更远一点,那么你会使用欧拉筛法。它的算法思想这里不再赘述。后面的一切练习题都是
- 数论知识点总结(一)
Mark 85
数学数论算法数据结构
文章目录目录文章目录前言一、数论有哪些二、题法混讲1.素数判断,质数,筛法2.最大公约数和最小公倍数3.快速幂4.约数前言现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣!一、数论有哪些数论原根,素数判断,质数,筛法最大公约数,gcd扩展欧几里德算法,快速幂,exgcd,不定方程,进制,中国剩余定理,CRT,莫比乌斯反演,逆元,Lucas定理,类欧几里得算法,调和级数
- HAOI2011 Problem b
SHOJYS
算法c++
Problemblink做法:莫比乌斯反演。思路:对于给出的nnn个询问,每次求有多少个数对(x,y)(x,y)(x,y),满足a≤x≤ba\lex\leba≤x≤b,c≤y≤dc\ley\ledc≤y≤d,且gcd(x,y)=k\gcd(x,y)=kgcd(x,y)=k,gcd(x,y)\gcd(x,y)gcd(x,y)函数为xxx和yyy的最大公约数。我们设f(n)=∑i=1x∑j=1y
- HDU 6715算术 莫比乌斯反演
9fe5164d41b8
@[toc]题意,求。链接:hdu6715思路方法一:打表得出:进一步按套路优化,提出,令得:首先这个东西是,是一个积性函数,所以可以筛出来。这个东西可以按分别预处理出来,预处理的复杂度和埃式筛一样是,空间复杂度也是。最后上面这个式子就可以求和了。HDU数据证明,不预处理第二点更快。。。方法二:已知又因为:因此:因为当不为时:而当为时,自然也是,所以也不会影响下面这个式子:接下来的步骤和方法一就相
- 莫比乌斯反演
Evan_song1234
数学算法与数据结构算法
莫比乌斯反演主要用于快速计算一些阴间式子(包含gcd(i,j)\gcd(i,j)gcd(i,j)等)。至于如何应用,往下看。莫比乌斯函数μ(x)={1x=10n含有平方因子(−1)kk为n本质不同质因子个数\mu(x)=\begin{cases}1&x=1\\0&n含有平方因子\\(-1)^k&k为n本质不同质因子个数\end{cases}μ(x)=⎩⎨⎧10(−1)kx=1n含有平方因子k为n
- 莫比乌斯反演
WangLi&a
莫比乌斯反演狄利克雷卷积杜教筛数论分块数论
莫比乌斯反演定义莫比乌斯反演公式:[n=1]=∑d∣nμ(d)[n=1]=\underset{d|n}\sum\mu(d)[n=1]=d∣n∑μ(d)其他几种莫比乌斯反演的形式:标准形式:f(n)=∑d∣ng(d)⇔g(n)=∑d∣nμ(d)f(nd)f(n)=\underset{d|n}\sumg(d)\Leftrightarrowg(n)=\underset{d|n}\sum\mu(d)f(\
- 矩阵树定理
_fairyland
图论算法
构造一个拉普拉斯矩阵:对于边(u,v)(u,v)(u,v),矩阵a[u][u]a[u][u]a[u][u]++,a[v][v]a[v][v]a[v][v]++,a[u][v]a[u][v]a[u][v]–,a[v][u]a[v][u]a[v][u]–,去掉最后一行最后一列,求行列式(取模用辗转相除),即图的生成树个数矩阵树求的是:∑T∏e∈Tpe\sum_T\prod_{e\inT}p_e∑T∏e
- 【Codeforces】 CF1436F Sum Over Subsets
Farmer_D
Codeforces算法
题目链接CF方向Luogu方向题目解法首先考虑消去gcdgcdgcd的限制考虑莫比乌斯反演优先枚举ddd可得答案为∑d=1nμ(d)∗ans(d)\sum_{d=1}^{n}\mu(d)*ans(d)∑d=1nμ(d)∗ans(d)其中ans(d)ans(d)ans(d)是所有aia_iai是ddd的倍数组成的答案令aia_iai为ddd的倍数的所有数的可重集为SSS考虑∑x∈Ax∗∑y∈By=∑
- 数论分块学习笔记
Dawn-_-cx
数论学习笔记算法数论c++数论分块杜教筛
准备开始复习莫比乌斯反演,杜教筛这一部分,先复习一下数论分块0.随便说说数论分块可以计算如下形式的式子∑i=1nf(i)g(⌊ni⌋)\sum_{i=1}^{n}f(i)g(\lfloor\frac{n}{i}\rfloor)∑i=1nf(i)g(⌊in⌋)。利用的原理是⌊ni⌋\lfloor\frac{n}{i}\rfloor⌊in⌋的不同的值不超过2n2\sqrt{n}2n个。当我们可以在O(
- C/C++数论/数学算法总结(关于数学知识以及一些比较重要的算法)
Xq_23
大数算法编程语言
总结C/C++关于数学知识以及一些比较重要的算法1.数论整数型问题:整除、最大公约数、最小公倍数、欧几里得算法、扩展欧几里得算法.素数问题:素数判断、区间素数统计.同余问题:模运算、同于方程、快速幂、中国剩余定理、逆元、整数分解、同余定理.不定方程.乘性函数:欧拉函数、伪随机数、莫比乌斯反演.2.组合数学排列组合:技术原理、特殊排列、排列生成、组合生成.母函数:普通型、指数型.递推关系:斐波那契数
- 矩阵树定理||高斯消元求行列式
Yjmstr
学习笔记矩阵树定理
参考链接-博客园参考链接-oiwiki定理部分并没有什么原创内容,全是阅读上面两篇文章做的笔记。矩阵树定理KirchhoffKirchhoffKirchhoff矩阵树定理(简称矩阵树定理)解决了一张图的生成树个数计数问题。矩阵树定理有很多形式,以下内容是一些声明。应用矩阵树定理的图允许重边,但是不允许自环。以下内容是照抄oiwiki的无向图情况:设GGG是一个有nnn个顶点的无向图。定义度数矩阵D
- 矩阵树定理复习与简要证明
EasternCountry
基础算法算法
矩阵树定理用处计算无向图的生成树个数。命题&简要证明矩阵树定理:给定一个有n个点的图G的邻接矩阵A和度数矩阵B(就是B[i][i]B[i][i]B[i][i]表示i这个点的出度,其他位置均为0),记S为G的生成树个数。设T为B-A,记T划去第k行和第k列的矩阵为P(1y,则意味着一定不会有p[y]=y,所以y也一定会有一条出边,最终一定会形成一个环。有环非简单环就意味着有一个点至少有两个出边,这个
- 「SDOI2008」仪仗队
L('ω')┘脏脏包└('ω')」
题解题解
目录1.介绍2.分析3.代码1.有注释版2.copy专用1.介绍(同上,教练把lg禁了,暂时给不了网址+还我LG!!!)怎么说呢,弱化forest(forest网址下次补上)就这一个弱化,就从莫比乌斯反演欧拉函数2.分析看一看图片其实我们可以沿着对角线就是一下把它变成、与(截屏截的好丑呀qwq)实际上,我们只需要求的总数给它乘二加三(因为有(1,0),(1,1),(0,1))即可问题又来了:怎么求
- 算法学习笔记(24): 狄利克雷卷积和莫比乌斯反演
jeefy
#狄利克雷卷积和莫比乌斯反演>看了《组合数学》,再听了学长讲的……感觉三官被颠覆……[TOC]##狄利克雷卷积如此定义:$$(f*g)(n)=\sum_{xy=n}f(x)g(y)$$或者可以写为$$(f*g)(n)=\sum_{d|n}f(d)g
- [HAOI2011]Problem b(莫比乌斯反演)
何况虚度光阴
数论c++算法
[HAOI2011]Problemb题目链接:https://www.luogu.com.cn/problem/P2522题目描述对于给出的nnn个询问,每次求有多少个数对(x,y)(x,y)(x,y),满足a≤x≤ba\lex\leba≤x≤b,c≤y≤dc\ley\ledc≤y≤d,且gcd(x,y)=k\gcd(x,y)=kgcd(x,y)=k,gcd(x,y)\gcd(x,y)gcd(
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,