- 数论基础知识(整除,质数,合数,质因数,取模,同余)
acmakb
蓝桥杯c++数论算法
整除整除的定义:设a,b∈Z,a≠0。如果q∈Z,使得b=aq,那么就说b可被a整除,记作a|b。若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),即b∣a,读作"b整除a”或“a能被b整除”,注意这两句话的前后主语。举例:15/5=0说明15可以被5整除,记作5|15常用性质:如果a整除b,并且b整除c,那么a整除c若a|b,b|c则>a|c20/5=44/2
- C语言-算法-数论基础
SpongeG
C语言-算法算法c语言开发语言
【模板】快速幂题目描述给你三个整数a,b,pa,b,pa,b,p,求ab mod pa^b\bmodpabmodp。输入格式输入只有一行三个整数,分别代表a,b,pa,b,pa,b,p。输出格式输出一行一个字符串a^bmodp=s,其中a,b,pa,b,pa,b,p分别为题目给定的值,sss为运算结果。样例#1样例输入#12109样例输出#12^10mod9=7提示样例解释210=10242^{1
- 【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】
不是AI
C语言密码学算法web安全密码学c语言
实验三、数论基础(下)一、实验内容1、中国剩余定理(ChineseRemainderTheorem)(1)、算法原理m1,m2,…mk是一组两两互素的正整数,且M=m1·m2·…·mk为它们的乘积,则如下的同余方程组:x==a1(modm1)x==a2(modm2)…x==ak(modmk)对于模M有唯一的解x=(M·e1·a1/m1+M·e2·a2/m2+…+M·ek·ak/mk)(modM)其
- 【网络安全】【密码学】【北京航空航天大学】实验二、数论基础(中)【C语言和Java实现】
不是AI
C语言Java密码学密码学c语言java
实验二、数论基础(中)一、实验内容1、扩展欧几里得算法(ExtendedEuclid’sAlgorithm)(1)、算法原理已知整数a,b,扩展的欧几里得算法可以在求得a,b的最大公约数的同时,找到一对整数x,y,使得a,b,x,y满足如下等式:ax+by=d=gcd(a,b),其中gcd(a,b)为a和b的最大公约数。(2)、算法流程本算法的大致流程如下图所示:(3)算法的代码实现(C语言)#i
- 【网络安全】【密码学】【北京航空航天大学】实验一、数论基础(上)【C语言和Java实现】
不是AI
C语言密码学Javaweb安全密码学c语言
实验一、数论基础(上)一、实验目的1、通过本次实验,熟悉相关的编程环境,为后续的实验做好铺垫;2、回顾数论学科中的重要基本算法,并加深对其的理解,为本学期密码学理论及实验课程打下良好的基础。二、实验原理数论主要研究的是整数的运算及性质,许多常用的加密算法都用到了数论知识。三、实验环境本次实验的实验环境为Dev-C++5.11,以及IntelliJIDEAIDE。四、实验内容1、厄拉多塞筛算法(Si
- 洛谷普及组P1044栈,题目讲解(无数论基础,纯打表找规律)
Colinnian
深度优先算法题目讲解
[NOIP2003普及组]栈-洛谷我先写了个打表的代码,写了一个小时,o(╥﹏╥)o只能说我真不擅长dfs。intn;std::unordered_mapmap;voiddfs(std::vector&a,intstep,std::stackp,std::strings){if(step==n+1){while(!p.empty()){s.push_back('0'+p.top());p.pop(
- 初等数论基础
satadriver
数学算法抽象代数
欧拉函数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉函数\phi(x),其中x是正整数,函数的值是从0到x-1之间与x互为质数的个数欧拉函数ϕ(x),其中x是正整数,函数的值是从0到x−1之间与x互为质数的个数欧拉定理aϕ(m)=1(modm),其中m和a是大于1的正整数a^{\phi(m)}=1(mod\quadm),其中m和a是大于1的正整数aϕ(m)=1
- 【考研—密码学数论基础】环、群、域、多项式运算
GoesM
考研--密码学与网络安全c++数论考研密码学抽象代数
注:下述笔记根据学习通公开课程《数学的思维方式与创新》,部分内容并非严谨数学定义,个人理解居多。注2:第一遍学的时候理解得太片面了,面试被问到了才意识到理解得有问题,特此重新更正Pre:理解一些问题群?环?域?这些概念是在聊什么?它们都相当于是一种特殊的集合。抽象代数中的加法?乘法?本质是:定义新运算。它其实不同于我们平时知道的乘法和加法,但在逻辑上有一些相似之处。单位元:在集合中作乘法运算,类似
- 数论基础之模运算
wxhyaoshunyutang
抽象代数
数论基础之模运算这篇罗列一下模运算的定义,即最基本的运算定理首先回顾一下整除的性质a是b的倍数=b整除a=b|a定理:对任意整数a和b,b≠0b\neq0b=0,唯一存在一对整数q和r,使得0≤\leq≤r≤\leq≤|b|,a=qb+r整数的基本性质性质1.若a|b,b|c,则a|c性质2.若a|b,则a|bc性质3.若a|b,a|c,则a|b+c性质4.若a整除b1,b2…bn,则a|Λ1\
- 数论基础模板-----数论成长之路
gzr2018
算法竞赛
最大公约数gcdgcd(f[n],f[m])=f[gcd(n,m)]intgcd(inta,intb)//a大于b{returna%b==0?b:gcd(b,a%b);}ViewCode最小公倍数LcmintLcm(inta,intb){returna/gcd(a,b)*b;}ViewCodeint输入输出挂inlineintread(){intx=0,f=1;charc=getchar();wh
- 约数——数论算法
miracle1114
数论算法c++
数论基础知识本篇文章主要讲述数论中基础算法约数部分的内容提示:本篇文章代码参考ACWing文章目录数论基础知识一、约数是什么?二、约数的相关算法1.枚举出某一个数的所有约数2.求约数的个数3.最大公约数4.约数之和!!:以下是本篇文章正文内容,下面案例可供参考一、约数是什么?约数,又叫因数。整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,
- rsa加密算法_CTF现代密码之RSA之数论
weixin_39817176
rsa加密算法rsa加密算法实现rsa算法pythonrsa算法代码凯撒密码加密算法python
亲爱的,关注我吧10/30文章共计2345个词预计阅读8分钟如果有伙伴发现这篇文章小编之前发过不要惊讶哦是对文章做了一些更正呀来和我一起阅读吧前言:在CTF的密码题目中,RSA以其加密算法之多且应用之广泛,所以在比赛中是最常见的题目。学习密码学并不难,但首先得打好数学基础,并在攻破密码的学习之路上持之以恒。今天我们就来打开RSA加密世界的第一扇门《数论》。数论基础:1.素数2.公约数与公倍数3.欧
- 数论基础(III):新兴学科及前沿数学。
luj_1768
算法经验分享数据库c语言开发语言
近现代的数论研究,一般是与高能物理、天体物理、生物医药、材料工程、计算工程,相互影响、相互促进、同步进化的。其理论基础大多根植于香浓底论、七桥问题。高数、高代、线数,的学科建设与学科融合是当前数学研修的又一主流方向。这与社会对计算方法、解算方案的需求有关。计算工具的发展,为群论、集合概率论、统计分布理论、的应用和发展,提供了条件、带来了机遇。信息论、人工智能、元宇宙,则是当前学科发展的综合学科和前
- 算法比赛备赛笔记
开longlong了吗?
算法笔记
个人觉得,对于计算机专业的大学生来说,算法竞赛应该是性价比最高的比赛了。除了icpc和ccpc这两个比较难拿国奖之外,其他的比赛获奖难度并不大,比如蓝桥杯、天梯赛、睿抗,认真学习一年算法,水个国奖完全没问题。本篇博客是我在一年多的学习和比赛中所做的笔记,记录的内容都是我认为在比赛中高频次出现的算法,而且除了线段树之外都是比较基础的算法。应该会不断更新吧。一.算法1.数论基础循环小数转换为分数转换方
- 数论基础。
luj_1768
算法数据库c语言经验分享开发语言
许多学习软件的同学都非常希望自己能成为算法大师,事实上,所有的算法都源于数论。这里,将简单的介绍一些数论有关的知识:对几大基础数列的解读是最基本、最关键的数论修道。素数分析、质因数分解、和式分组(二元一次方程的整数解有关的分析方案)。素数分析、密码学。素数分析、关组分析。素数分析、杂论。超越数分析、PI,EE分析。根式分析(二次根式,三次根式)。一元多次方程的解分析,一元二次方程的解分析。一元高次
- 密码学:数论基础
PlyTools
符号表符号说明衍生示例有理数,即,整数集,即,表示正整数集,表示负整数集自然数集,即也表示正整数集实数集,即,同余于模有限群的阶,的最大公约数欧拉函数群生成元环由生成的主理想域表示模n形成的有限域,为素数1模运算(ModularArithmetic)1.1模约化(ModularReduction)如果我们用代替,称为此过程称为模约化,而代表了除以的余数1.2同余式(Congruences)对于,如
- RSA加密原理详解,以及RSA中的数论基础
Demonslzh
网络安全算法密码学安全
文章目录1.RSA加密算法介绍2.RSA密钥生成3.RSA加密和解密4.RSA的安全性5.涉及到的数论基础5.1.模的逆元5.1.1.扩展欧几里得算法计算模逆元5.1.2.费马小定理计算模逆元5.2欧拉函数5.3离散对数离散对数问题6.RSA加密的安全性1.RSA加密算法介绍RSA加密是一种非对称加密算法,由罗纳德·李维斯特(RonRivest)、阿迪·萨莫尔(AdiShamir)和伦纳德·阿德曼
- CSDN竞赛7期题解
昂昂累世士
其它容斥原理dfsgcd
总结这次竞赛的题目质量相对之前竞赛来说是有明显进步的,由两道经典面试题加上两道中等难度题目构成。前两道的受众可能是初学算法的同学吧,对于学算法的同学来说,前两道题没有在五分钟内AC都是不合格的。当然,偷懒这么久没学算法的我,也花了数倍的时间才ac前两道。T3主要考察问题的分析能力,实现不难。T4考察数论基础,容斥原理和GCD,注意下细节也是不难ac的。题目列表1.奇偶排序题目描述给定一个存放整数的
- 【数论基础】
萌新,菜
c++图论算法
1.质数质数筛(埃氏筛+线性筛)//线性筛#include#includeusingnamespacestd;constintN=1000010;intprimes[N],cnt;boolst[N];voidget_primes(intn){for(inti=2;i>n;get_primes(n);cout#include#include#includeusingnamespacestd;type
- 密码学基础学习
宫jx
首先声明符号:C密文,P明文,K密钥,EK加密,DK解密。一。传统密码学。基本是移位和变换,比如凯撒密码,维吉尼亚密码,hill密码等。(1)凯撒密码,密钥空间是26。加密C=(p+k)mod26。解密P=(c-k)mod26。(2)单表置换。n个元素有n!个置换(3)维吉尼亚密码。公式太复杂不想写。。。二。数论基础知识,有限域的运算,加法是按位异或,乘法比较有意思。高级加密标准(AES)就是依赖
- 【ctf-3】数论基础+Crypto初步
三金C_C
密码学算法
本周继续学习了公钥密码学的数论基础,最近事情实在太多了只能海绵里挤时间了。当然关于数论这个部分还是非常重要的,不仅实在密码学部分还在是在算法设计部分都至关重要的,本人也还没有深入接触过python,php,对于一些脚本处理大多还是用的C++,这一点日后需要提高,很多关于密码的解法大多是用python的。同时本周也进行了Cyrpto的题目练习,确实让我大开了眼界,认识了很多加密方式,对于此可以看总结
- 【蓝桥杯Java组】数论基础—素数筛、最大公约数、最小公倍数
Mymel_晗
蓝桥杯蓝桥杯leetcode算法Java数论
前言:一学就会的小技巧(一):前缀和一学就会的小技巧(二):差分一学就会的小技巧(三):快速幂一学就会的小技巧(四):龟速乘一学就会的小技巧(五):矩阵快速幂一学就会的小技巧(六):矩阵快速幂的应用省赛真题—K倍区间(前缀和,数学,思维)☕☕在解决编程题时,除了要对算法本身有足够的了解,往往还需要掌握一些基础数论。☕☕常用的数论有:最大公约数最小公倍数判断两数互质素数筛下面逐一给出代码模板~1.
- 【笔记】莫比乌斯反演(前置知识)
inferior_hjx
笔记c++算法
文章目录前言前置知识模定义性质整除定义性质同余定义性质逆元定义性质积性函数定义常见的积性函数证明欧拉函数为积性函数例1:欧拉函数线性筛例2:莫比乌斯函数线性筛前言由于文章正文太长,不得不分几篇博客。本篇为数论基础内容,学习过数论的可以跳过。最近学了莫比乌斯反演和一点狄利克雷卷积,感觉很难,也是看了很多博客才有点明,写一篇博客帮助自己理解。由于数论大多基于正整数讨论,故除特殊说明外,本文所有变量都为
- 数论
weixin_30381317
c/c++数据结构与算法
目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b.筛选法
- 除等数论
じ☆夏妮国婷☆じ
算法除等数论
除等数论目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b
- 初等数论
YinJianxiang
数论
转自:http://cppblog.com/menjitianya/archive/2015/12/02/212395.html一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗
- “kuangbin带你飞”专题计划——专题十四:数论基础
I_have_a_world
#ACM_数论#ACM_专项训练数论基础数论kuangbin带你飞
写在前面1.目前还没啥写的。开始时间:2021-05-13(其实博客上看得到该博客创建时间的)2.上一个专题刷的是网络流(博客总结),属于第一次接触。本来想的是一周特别高效,然后一周略划水,结果是五一期间高效,工作日有课略划水。还好,每个题都写了博客,收获很多3.这个专题,我想应该每个题都涉及了不一样的知识吧。也建议每个题都写博客4.写个感受?有与高四刷书的感觉了,激动,期待,轻松辛苦,有时候一本
- 数学基础知识回顾(二):集合论
Ali forever
图论拓扑学5G信息与通信
集合论前言一、数论基础与计数基础1.幂集2.唯一析因定理(算术基本定理)3.贝祖定理4.同余定理5.鸽巢原理(抽屉原理)1.几个例子2.一般性鸽巢原理二、二元关系1.关系及其表示1.笛卡尔积2.二元关系的定义3.二元关系的一些概念2.关系的性质3.关系的闭包4.等价关系与集合的划分三、函数与映射1.单射,满射与双射1.定义2.与关系矩阵和关系图的关系3.函数的复合4.几种常见函数5.函数的势四、偏
- 【ctf】Crypto初步基础概要
三金C_C
密码学ctf学习周报pythoncrypto网络安全密码学
在CTF界中,真正的Crypto高手只要一张纸一只笔以及Python环境就可以称霸全场了。(虽然是玩笑话但却是事实)当然了,密码学是整个网络安全的基础,不管你是否参加ctf类的比赛,对于密码的常识也都需要掌握,希望接下来的内容对你有所收获,也希望可以进行学习和交流,另外欢迎各位师傅的指点,鄙人不才,还请各位师傅多包涵。一个好的算法手或者数论基础极强的人经过编程培养定是优秀的Crypto选手,所以算
- 密码学-数论基础
一颗菜籽
笔记算法网络安全
数论基础整除性和带余除法整除性:b整除a:b|a、b是a的一个因子性质:a|1,a=+(-)1带余除法:a=qn+r,|r|=b>0anda%b!=0)]模运算a除以n所得的余数为a模n,记为amodn,n成为模数,ex:余数与模数同号同余:(amodn)=(bmodn)称为a和b是模n同余,记为a=b(modn)性质:相减的两个数可被模数整除,则这两个数同余交换律传递性模算数运算1、2、3可以这
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C