前言:仅个人小记。即证明有限群中的元素必然可以通过自乘达到幺元。证明对于有限群G,∀a∈G\foralla\inG∀a∈G,元素a的阶都存在。元素自乘序列如下;a,a2,a3,...a,a^2,a^3,...a,a2,a3,...因为G是一个群,所以根据封闭性必然有ai∈Ga^i\inGai∈G又因为群G是有限的,所以必然有ai=aj,i
2018-12-03
小肥猪杰
2018-12-03个人小记最近这段时间我的学习状态不是很好。再次做深刻检讨。明明知道自己很讨厌无能为力的感觉,但是偏偏还是因为自己的拖延和磨蹭活成了自己最不喜欢的颜色。望自勉。
MySql笔记个人小记
笔下天地宽
数据库mysql数据库随笔小知识
MySQL虽然勉强算是初窥门径,但是里面知识点太多了,在这里记录下吧,毕竟好记性不如烂笔头。1.union与unionall的区别unionall求并集,而且不去重,union的话是求并集,去重2.select查询中,查询条件in与notin放到一起不一定是全集。比如,select*fromstudentwhereid_cardin('123',null)unionallselect*fromst
个人小记(6月25日)
艾问才会赢
投资是怎样一种存在?给一笔资金判定无期徒刑或死刑,放在一个年投资收益率高的股票上,并定期、定额不断投入(不管股价处于上升或下降期)。个人几个小问题:1.如何寻找年化收益率高的成长型公司?怎么判断后续的它是否还会成长?2.给一笔资金判无期或死刑,那这个长期又是多长?什么时候才可以使用这笔收益?3.定投,以复利公式来看,固然属于翻倍较快的方法,可如何在心理上去除在股价下降时仍旧买入的心理阴影?4.如果
Hi,我想听你更多的故事-AICE踏青个人小记!
尹泽Rancho
大家集体照哈哈,请允许我笑一会在开始分享!今天和大家一起踏青发自内心的高兴,也许是宅男好久没有出去呼吸一下,最重要的是有一群有故事的人陪伴,特别感谢AICE举办这次活动,十分感谢组织者Vivienne李知熹的盛情邀请和之前贴心的沟通!谢谢图片发自App图片发自App更要感谢日本组长清水大人,组织我们破冰游戏,分享故事,还贴心为大家买食物好像唯一组长大人的图片,sorry好哒!官方语说了,还是来分享
样本均值的抽样分布的均值问题
Zetaa
概率与统计
声明:仅仅个人小记为什么用样本均值来作为总体均值的估计?这样真的好吗?如果好,到底好到什么程度。目的本文用来解释下面这句话(本人对下面这句话的逻辑一开始是不接受的,故而写文记录,以分享个人的逻辑理解):xˉ\bar{x}xˉ落在μ\muμ的2个σxˉ\sigma_{\bar{x}}σxˉ左右范围的概率等价于μ\muμ落在xˉ\bar{x}xˉ的2个σxˉ\sigma_{\bar{x}}σxˉ左右范
赌徒输光 酒鬼回家 长期双方竞赛问题
Zetaa
概率与统计
前言:仅个人小记。一、问题原型赌徒手里有x元,每一局输的概率恒定为p,请问赌徒最终输光的概率?酒鬼徘徊(在坐标轴上左右移动)回家,目前酒鬼在坐标轴上x处,家在原点0处,请问酒鬼最终回到家的概率为多少?比特币中(中本聪的文章引入Gambler’sRuinproblem)两条链比赛输赢的概率问题,具体就是攻击者最终挖得的链比诚实者挖出的块儿要更多,此时攻击者就可以堂而皇之地取而代之,问题就是估算攻击者
线性不可分SVM 软间隔
Zetaa
ML软间隔SVMpython
前言:仅个人小记。参看https://blog.csdn.net/qq_25847123/article/details/108058804。线性不可分大部分样本线性可分,总体线性不可分。引入松弛变量某些样本点不能满足函数间隔大于等于111这个约束条件,软间隔策略就是对每个样本点引入一个松弛变量ξ≥0\xi\geq0ξ≥0。是的函数间隔加上松弛变量是大于等于111的。此时,之前硬间隔最大化中的约束
线性可分支持向量机 对偶性形式求解
Zetaa
ML支持向量机对偶形式python实现
前言:仅个人小记。https://blog.csdn.net/qq_25847123/article/details/108055404给出了原问题的解法。这里给出支持向量机中凸二次规划问题的对偶解法。不论是对偶还是原问题形式,都是转成二次规划问题,编程角度上来看没太大差别。但从理论角度来看,对偶性形式能够直接凸显出“内积”形式,进而可以很好地引入“核”概念。对偶形式minα12∑i=1N∑i=
线性可分支持向量机 凸二次规划解决原问题 python
Zetaa
ML支持向量机python李航例题超平面绘图
前言:仅个人小记。问题来自李航的《统计学习方法》第二版中例题7.1。问题如图,支持向量机的训练数据集为:正例点为x1=(3,3),x2=(4,3)x_1=(3,3),x_2=(4,3)x1=(3,3),x2=(4,3),负例点为x3=(1,1)x_3=(1,1)x3=(1,1),求最大间隔分离超平面。最大间隔法输入:线性可分训练数据集T=(x1,y1),(x2,y2),...,(xN,yN)T={
python 的 None 不能对外部变量初始化
Zetaa
Python相关
注:仅个人小记。python中使用外部变量时候,在对全局变量初始化时,不能使用None进行初始化,None表示空对象,在使用None变量初始化时候不会有对象产生。错误初始化方法deff():a=100returndefg():print(a)returna=Nonef()#并没能对外部变量a进行初始化g()#打印结果仍然为None外部变量初始化方法使用globaldeff():globalaa=1
一元以及二元多项式插值拟合(泰勒)
Zetaa
matlab及其代码实现
申明:仅个人小记根本上是基于泰勒公式,包括一元的和二元的泰勒定理。泰勒用多项式逼近的思想。效果展示一元二元原理交代一元二元其他推导部分和一元一样,本质上还是解线性方程组。Matlab代码一元%本质上就是n个方程解n个未知数,这里的未知数是待求函数的所有系数%Ac=YA是由X组成的范德蒙德行列式,根据范德蒙德行列式的性质,%为保证可解,X中不允许出重复的数值X=1:10;Y=[4,5,1,8,2,-
循环群的子群、群阶因子、元素阶
Zetaa
数学杂类记录
前言:仅个人小记。讨论内容子群的阶必然为群阶的因子,这一点由群论中的拉格朗日定理已经知道,不必再详细讨论。循环群G的群阶n的因子d必然相应一个子群,该子群的阶就等于d,即群论中拉格朗日定理的逆在循环群中成立。循环群G中,阶为d的元素必然共有φ(d)\varphi(d)φ(d)个,d是群阶n的因子。循环群G中,根据阶不同,对所有元素进行划分,引出定理n=∑d∣nφ(d)n=\sum_{d|n}\va
欧几里得算法(求解最大公约数的优质方法)以及原理拓展
Zetaa
数学杂类记录
前言:仅个人小记。欧几里得算法提供了求解最大公约数的方法,而求解最大公约数是十分有意义的,因为当两个数的最大公约数为1的时候,这两个数就是互质的,即gcd(a,b)=1等价于a与b互质,而互质这个性质在数论中则是非常重要。结论交代欧几里得算法(EculideanAlgorithm)指明:a,b最大公约数(GreatestCommonDivisor),就等于b,a%b的最大公约数,公式如下gcd(a
PCA降维示意以及SVD辅助作用体现
Zetaa
ML
前言:仅个人小记一、简要介绍PCA降维思想对角化并引出正交矩阵QATA=PΛP−1=QΛQT{A}^{T}A=P\Lambda{P}^{-1}=Q\Lambda{Q}^{T}ATA=PΛP−1=QΛQT其中,A是m*n的矩阵,A的每一个列向量代表着一个数据样本,即A是由n个m维度的数据样本构成的数据矩阵。Λ\LambdaΛ是对角矩阵,且对角线上的值按降序摆放。Q是规格为nXn的正交矩阵。借助正交矩
KKT最优条件
Zetaa
数学杂类记录
申明:仅个人小记。前言:文中默认函数都是可导的。已知最优点必然取自来自边界点和极值点,本文只讨论极值点部分。理清逻辑:(1)“条件”指的是,只有满足了“条件”才有可能是极值点,但满足这个“条件”的点则不一定是极值点,但是借助这个“条件”则大大缩小了我们寻找极值点的范围。(2)拉格朗日乘数法将等式约束条件求极值转化为无条件约束求极值(3)KKT条件分别将不等式约束求极值转化为无条件约束求极值和等式约
简版服务器(c语言实现)
Zetaa
小项目设计日志
声明:仅个人小记目录:(1)简单交代及效果展示(2)开发日志(3)源代码(4)小结(1)简单交代及效果展示环境:Ubantu15.10gcc5.2.1这是一个用c语言实现的服务器(平台无所谓的,只是windows和linux的头文件有点不同,网上查阅下即可),可以充当静态网页服务器。只是静态。功能简陋,主要是学习socket通信知识。效果展示:1.启动服务器(server文件是编译好的可执行文件)
列向量和行向量看待矩阵乘法
Zetaa
数学杂类记录
声明:仅个人小记前言:主要是引入一个新的看待矩阵乘法的角度觉得这个挺重要的,故做记录列向量角度,矩阵左乘AB=C结合上图,我们可以知道,结果矩阵C中的第j列完全可以表示为矩阵A中列向量的线性组合,具体怎样的线性组合完全是参看矩阵B中相应的第j列,与矩阵B中的其他列无关。换言之,左侧矩阵提供基本的列向量,右侧的矩阵交代怎样的线性组合。行向量角度,矩阵右乘AB=C结合上图,结果矩阵C中的第i行完全可以
相似矩阵、过渡矩阵
Zetaa
数学杂类记录
申明:仅个人小记一、相似矩阵P−1AP=BP−1AP=BP−1APx⃗=Bx⃗P−1APx→=Bx→x⃗x→是新空间的一个向量,Px⃗Px→表示将新空间向量x⃗x→变换为原空间向量,APx⃗APx→是在原空间下做A变换,P−1APx⃗P−1APx→是将变换结果反变回新空间,Bx⃗Bx→是在新空间下对向量x⃗x→做B变换对上式进行变形,得A=PBP−1A=PBP−1Ay⃗=PBP−1y⃗Ay→=PB
opencv中使用摄像头录制视频
Zetaa
c/c++
前言:仅个人小记。以下只是两个基本操作,基于opencv提供的两个主要的视频操控类VideoCapture和VideoWriter来实现录制视频这个简单功能。在很多应用中,录制视频可以作为基础功能,故简要记录。#include#include#include#include#includeusingnamespacecv;usingnamespacestd;intmain(){VideoCaptu
拓展欧几里得算法求乘模逆元
Zetaa
数学杂类记录
前言:仅个人小记。之前已经证明了“若正整数a,b互素,则必然存在b以内的正整数k,使得ak%b=1”成立。本文进一步借助拓展欧几里得算法,给出快速求解k值的方法,即求解乘法逆元的方法,具体多快?时间复杂度为O(log(b))。另外,除了在这里产生了求乘法逆元的需要,其他很多场合也有求解乘法逆元的需要,比如CRT中国剩余定理算法中、模幂乘循环群中求解逆元等。前要知识如果amod 
a与c互质且b与c互质,则必然ab与c互质
Zetaa
数学杂类记录证明互质乘法公约数质数
前言:仅个人小记。质数是数的指纹,是数的钥匙,对一个数质因数分解就是在探求这个数的指纹。公约数则是指共同的钥匙。a与c互质记为a⊥ca\perpca⊥c。证明:若a⊥ca\perpca⊥c,b⊥cb\perpcb⊥c,则必有ab⊥cab\perpcab⊥c因为a⊥ca\perpca⊥c,b⊥cb\perpcb⊥c,所以gcd(a,c)=1,gcd(b,c)=1,此时证明ab⊥cab\perpcab
简版服务器(c语言实现) (多线程)
Zetaa
小项目设计日志
声明:仅个人小记这篇文章是对我上一篇文章的增加:增加内容:多线程,实现的是一个并发服务器。其中,用到了一把锁(pthread_mutex_t),用到了一个信号量(信号量的值为我规定的服务器处理队列长度值),然后就是将run函数里面的内容移植到void*thread(void*argc)函数。只是贴出源码:效果展示(这个效果,得看清我的源码顺序过程才好理解,额不好意思。多线程并发过程是结果输出交错的
最小二乘法推导和证明(matlab代码实现)
Zetaa
matlab及其代码实现
声明:仅个人小记前言数据理论上是呈现线性关系,但是实际数据往往不是满足线性关系,但大体上的趋势呈现出线性关系。这个时候,我们最终希望得到的是唯一的线性关系,而不是一堆实验数据,所以产生了用一堆实验数据来确立理论上的线性关系的这样的问题。这样的问题,我记得在初中,高中物理里面经常用到,做实验得到很多组电流和电压的数据值,然后画在二维坐标上,往往,这些电流电压数据值并不在一条直线上,但大体上都有固定的
linux个人小记
howie6879
linux个人小记1.ubuntu下zip解压乱码2.Python下mysql无法使用localhost进行连接3.安装爱壁纸出错记录4.设置静态ip-ubuntu16.041.ubuntu下zip解压乱码有时候在解压中文文档的时候,总会出现乱码,现在以zip压缩文件举例:1.1.进行安装sudoapt-getinstallunzip1.2.进行解压unzip-OCP936[yourfile]2.
清单2.28
书雪同学
1、方法论是总结出来的,总结好的地方,反思不好的地方,下次怎么克服做到更好;2、最好的锻炼自己是强制输出,每天让自己有任务,有输出(作业-兴趣),一般情况下,正常/公开的演讲好于个人小记/思维导图;3、昨天看的孙子兵法,孙子的敬畏心:先胜而后战,我们从五事来分析对战的优劣势(现在企业的SWOT),道(民众爱戴)、天(上顺天时)、地(下知地理)将(优秀的将领)、法(军法)五事;4、将要具备的五个特质
Android开发个人小记
步行者传说
1.finishActivity时软键盘不关:在onPause时用InputMethodManager的hideSoftInputFromWindow关闭。2.中的的android:gravity属性以及android:height,android:width,android:height到API23之后才有的,别被AS忽悠了。3.合并?selectableItemBackground与你自己的背
工作一周年总结(个人小记)
产品喵dandan米娜
Learningislikerowingupstream,nottoadvanceistodropback.(学如逆水行舟,不进则退)参加工作一年,也该做一个阶段小结,总结一下自己这一年来的工作。2015年8月来广州,在萝岗区实训了近四个月JAVA企业级项目开发管理。在校时也曾好好努力学习想要成为一枚合格的程序媛,但能力和兴趣不及。经过综合分析考虑,决定往产品方向发展,虽然早知产品也是一个坑,但还
初识llinux-第一周个人小记
a754688178
初识linux
计算机系统:主要有硬件系统和软件系统组成第一代计算机--属于电子管时代第二代计算机--晶体管时代第三代计算机--集成电路时代第四代计算机--大规模集成电路时代2.在1946的时候由数学家冯‘诺伊曼提出,计算机是由运算器、控制器、存储器、输入设备和输出设备五大部分组成。根据计算机的复杂程度可分为一下几种:超级计算机,大型机,小型机,微机;3.众所周知,linux的核心原型是1991年有linuxTo
环海南岛骑行个人小记
黎老巴
人生是以各种方式打发时间的死亡过程:有讲奉献讲信念的理想主义方式打发的;有讲超越讲精进的现实主义方式打发的;有讲细腻讲品味的浪漫主义方式打发的……无论是何种方式打开打发都毫无对错。如果硬把三者融合一体,最多也叫自虐!怀着对海的畏惧;对海宽大深的追求;对海蓝色的迷恋;于是一场豪无规划、掺杂着理想现实浪漫等乱七八糟的骑行开了。。。海口滨海湾首发班次:柳州~海口。柳州到海口要坐14小时的火车,到徐闻后有
多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
[科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
[一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源