RSA算法是一个非对称加密算法,它依赖于数论中的大整数因数分解问题的困难性。在RSA中,加密和解密使用不同的密钥,分别称为公钥和私钥。RSA算法的基本原理包括以下几个步骤:密钥生成:a.选择两个大的质数(p)和(q)。b.计算它们的乘积(n=pq),n的长度就是密钥长度。c.计算欧拉函数(\phi(n)=(p-1)(q-1))。d.选择一个整数(e),使得(1
浅谈欧拉函数
gu_zhou_suo_li_weng
推荐算法算法
定义:首先说一下定义吧,φφφ(n)表示从nnn与xxx互质的数的个数。其中x∈[1,n]x\in[1,n]x∈[1,n]。初始值:φ(n)=nφ(n)=n
欧拉函数及其代码实现
acmakb
蓝桥杯算法c++数论
欧拉函数:欧拉函数定义:欧拉函数是指对于一个正整数n,小于等于n且和n互质的正整数(包括1)的个数,记作φ(n)。例如φ(8)=4,因为1,3,5,7均和8互质。性质:当n是质数的时候,显然有φ(n)=n-1.规定:φ(1)=1.但是如果数大了会特别不好求,接下来我们引出欧拉函数计算方法:分解公式n分解质因数后:n=p1^a1×p2^a2×p3^a3…pk^ak,(其中pi为质数)那么φ(n)=n
数论 之 欧拉函数篇
海风许愿
Acm算法c++算法数据结构c++开发语言
欧拉函数定义:1∼N中与N互质的数的个数被称为欧拉函数,记为ϕ(N)公式:若N=p1^a1*p2^a2*…*pk^ak所有的pi都是N的质因数那么ϕ(N)=N*(p1-1)/p1*(p2-1)/p2*…*(pk-1)/pk;性质:性质1:如果n是质数,那么ϕ(n)=n−1,因为只有n本身与它不互质。性质2:如果p,q都是质数,那么ϕ(p∗q)=ϕ(p)∗ϕ(q)=(p−1)∗(q−1)性质3:根据
acwing 质数 约数 欧拉函数
honortech
算法
目录质数试除法定质数分解质因数筛质数约数试除法求约数乘积的约数个数最大公约数欧拉函数筛法求欧拉函数和质数试除法定质数boolis_prime(intnum){if(num>n;for(intj=0;j>num;for(inti=2;i1)cout>n;for(inti=0;i>num;vectorret;//包含1和num本身for(intj=1;j>n;for(inti=0;i>num;for(
欧拉函数 笔记
Daniel_1011
笔记
复习:欧拉筛intcnt,prime[10000005],n;boolvis[100000005];voidolaprime(){vis[1]=1;for(inti=2;iusingnamespacestd;intcnt,prime[10000005],n,q,k;boolvis[100000005];voidolaprime(){vis[1]=1;for(inti=2;iusingnamespa
欧拉函数 笔记 2
Daniel_1011
笔记c++
莫比乌斯函数大于1的正整数,只要有平方因子,那么其莫比乌斯函数值就为0。f(n)={1n=1(−1)rnn=p1∗p2∗p3∗...∗pr0elsef(n)=\left\{\begin{matrix}1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n=1\\(-1)^rn~~~~~~n=p1*p2*p3*...*pr\\0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AcWing.873.欧拉函数
Die love 6-feet-under
算法c++数据结构
给定nnn个正整数ai,请你求出每个数的欧拉函数。欧拉函数的定义1∼NNN中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)。若在算数基本定理中,NNN=p1a1p2a2…pmam,则:ϕ(N)ϕ(N)ϕ(N)=NNN×p1−1p1\frac{p1−1}{p1}p1p1−1×p2−1p2\frac{p2−1}{p2}p2p2−1×…×pm−1pm\frac{pm−1}{pm}pmpm−1输入格式
RSA知识点及刷题记录
甜酒大马猴
密码学python笔记
Crypto密码学------RSARSA基础知识欧拉函数phi=(p-1)*(q-1)*(r-1)gmpy2.gcd(a,b)//欧几里得算法gmpy2.gcdext(a,b)//扩展欧几里得算法gmpy2.iroot(x,n)//x开n次根d=gmpy2.invert(e,pai)//求逆元,d*e=1(modpai)gmpy2.mpz(x)//初始化一个大整数xgmpy2.mpfr(x)//
算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理
lijiachang030718
算法算法学习
目录引言一、欧拉函数1.概念2.求每个数的欧拉函数二、线性筛法求欧拉函数三、欧拉定理,费马小定理引言本文主要介绍欧拉函数、线性筛法求欧拉函数,以及公式是怎样推导出来的,并且介绍了欧拉定理,以及费马小定理是怎样被推导出来的。一、欧拉函数1.概念欧拉函数ϕ(N):欧拉函数\phi(N):欧拉函数ϕ(N):1~N中与N互质的数的个数,(互质:公约数只有1的两个自然数)N=p1α1⋅p2α2⋅p3α3⋅⋯
【数学】简化剩余系、欧拉函数、欧拉定理与扩展欧拉定理
OIer-zyh
数学#数论OI数学数论
简化剩余系与完全剩余系略有区别。我们定义数组ai(1≤i≤n)a_i(1\lei\len)ai(1≤i≤n)为模mmm的简化剩余系,当且仅当∀1≤i,j≤n\forall1\lei,j\len∀1≤i,j≤n,有ai≢aj(modm)a_i\not\equiva_j\pmodmai≡aj(modm),∀1≤i≤n\forall1\lei\len∀1≤i≤n,有gcd(m,ai)=1\gcd(
C++ 数论相关题目(欧拉函数、筛法求欧拉函数)
伏城无嗔
数论力扣算法笔记c++算法开发语言
1、欧拉函数给定n个正整数ai,请你求出每个数的欧拉函数。欧拉函数的定义1∼N中与N互质的数的个数被称为欧拉函数,记为ϕ(N)。若在算数基本定理中,N=pa11pa22…pamm,则:ϕ(N)=N×p1−1p1×p2−1p2×…×pm−1pm输入格式第一行包含整数n。接下来n行,每行包含一个正整数ai。输出格式输出共n行,每行输出一个正整数ai的欧拉函数。数据范围1≤n≤100,1≤ai≤2×10
Acwing - 算法基础课 - 笔记(数学知识 · 二)
抠脚的大灰狼
算法Acwing算法基础课算法数论
文章目录数学知识(二)欧拉函数公式法筛法欧拉定理快速幂扩展欧几里得算法中国剩余定理数学知识(二)这一小节主要讲解的内容是:欧拉函数,快速幂,扩展欧几里得算法,中国剩余定理。这一节内容偏重于数学推导,做好心理准备。欧拉函数公式法什么是欧拉函数呢?欧拉函数用ϕ(n)\phi(n)ϕ(n)来表示,它的含义是,111到nnn中与nnn互质的数的个数比如,ϕ(6)=2\phi(6)=2ϕ(6)=2,解释:1
【算法基础 & 数学】欧拉函数
为梦而生~
基础算法算法数学欧拉函数蓝桥杯
题目描述给定nnn个正整数aia_iai,请你求出每个数的欧拉函数。输入格式第一行包含整数nnn。接下来nnn行,每行包含一个正整数aia_iai。输出格式输出共nnn行,每行输出一个正整数aia_iai的欧拉函数。数据范围1≤n≤1001≤n≤1001≤n≤100,1≤ai≤2×1091≤a_i≤2×10^91≤ai≤2×109样例输入样例:3368输出样例:224定义φ(n)\varphi(n
数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
数论知识学习总结(二)
Nie同学
acwing学习总结c++
文章目录一、欧拉函数1.欧拉函数2.筛法求欧拉函数(采用筛质数的线性筛法)二、快速幂1.快速幂2.快速幂求逆元三、扩展欧几里得算法1.扩展欧几里得算法2.线性同余方程四、中国剩余定理1.表达整数的奇怪方式一、欧拉函数在数论,对正整数nnn,欧拉函数是小于等于nnn的正整数中与nnn互质的数的数目.1.欧拉函数1∼N1\simN1∼N中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)\phi(N)
【数论】一些数论知识
ssllth
数论&数学数论同余约数欧拉定理费马小定理
文章目录前言内容素数关于素数无限个的证明n以内的素数个数算术基本定理约数一个数的正约数个数(约数个数定理)一个数的正约数和(约数和定理)最大公约数和最小公倍数gcd(a,b)*lcm(a,b)=a*b的证明更相减损术欧几里得算法欧拉函数积性函数一些性质同余一些性质欧拉定理费马小定理贝祖定理(裴蜀定理)代码求通解ax+by=nax+by=nax+by=n方程的主要解题步骤线性同余方程乘法逆元线性求逆
大数据安全 | 期末复习(上)| 补档
啦啦右一
#大数据安全大数据与数据分析单例模式
文章目录概述⭐️大数据的定义、来源、特点大数据安全的含义大数据安全威胁保障大数据安全采集、存储、挖掘环节的安全技术大数据用于安全隐私的定义、属性、分类、保护、面临威胁安全基本概念安全需求及对应的安全事件古典密码学里程碑事件扩散和混淆的概念攻击的分类模运算移位加密仿射加密维吉尼亚密码DES混淆与扩散Feistel加密DES密钥生成DES流程数论欧几里得算法拓展欧几里得算法欧拉函数有限域运算AES密钥
算法归纳总结(第五天)(数论、数学知识(第一部分)总结)
乘风破浪的咸鱼君
算法c++
目录一、筛质数(与试除法)1、普通筛法2、埃筛法3、线性筛法4、试除法①、试除法代码二、约数1、试除法求约数2、最大公约数①、辗转相除法(欧几里得算法)3、约数个数4、约数之和三、欧拉函数1、普通筛求欧拉函数①、欧拉函数定义②、应用公式。③、代码实现2、线性筛求欧拉函数①、线性筛法②、求欧拉函数四、快速幂与求逆元1、快速幂2、快速幂求逆元五、扩展欧几里得算法与线性同余方程1、扩展欧几里得算法①、裴
欧拉函数和欧拉定理
云儿乱飘
数学知识数论
873.欧拉函数-AcWing题库#includeusingnamespacestd;intmain(){intn;cin>>n;while(n--){inta;cin>>a;intret=a;for(inti=2;i1)ret-=ret/a;cout#includeusingnamespacestd;constintN=1e6+10;intp[N]={0};vectorv,st(N);intma
数学之美 第十七章 RSA加密算法
A黄橙橙
预备知识:欧拉函数在数论,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(其中φ(1)=1)通式为:其中p1,p2...pn为x所有质因数,x是不为0的整数。特殊:若n为质数p的k次幂,因为除了p的倍数外,其他数都与n互质。欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)当n为奇数时,φ(2n)=φ(n)当n为质数时,φ(n)=n-1P.S.积性函数:对于任意互质的
AcWing--互质数的个数-->数论(欧拉函数)
芝士小熊饼干
ACWing算法python欧拉函数
AcWing4968.互质数的个数-AcWing(python)#输入a,b=map(int,input().split())mod=998244353#快速幂取模模板:defqmi(a,b):res=1while(b):if(b&1):res=res*a%moda=a*a%modb>>=1returnres#欧拉函数#质因数#判断特例if(a==1):print(0)else:res=ax=a#
HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
[转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
[物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&