RSA算法是一个非对称加密算法,它依赖于数论中的大整数因数分解问题的困难性。在RSA中,加密和解密使用不同的密钥,分别称为公钥和私钥。RSA算法的基本原理包括以下几个步骤:密钥生成:a.选择两个大的质数(p)和(q)。b.计算它们的乘积(n=pq),n的长度就是密钥长度。c.计算欧拉函数(\phi(n)=(p-1)(q-1))。d.选择一个整数(e),使得(1
浅谈欧拉函数
gu_zhou_suo_li_weng
推荐算法算法
定义:首先说一下定义吧,φφφ(n)表示从nnn与xxx互质的数的个数。其中x∈[1,n]x\in[1,n]x∈[1,n]。初始值:φ(n)=nφ(n)=n
欧拉函数及其代码实现
acmakb
蓝桥杯算法c++数论
欧拉函数:欧拉函数定义:欧拉函数是指对于一个正整数n,小于等于n且和n互质的正整数(包括1)的个数,记作φ(n)。例如φ(8)=4,因为1,3,5,7均和8互质。性质:当n是质数的时候,显然有φ(n)=n-1.规定:φ(1)=1.但是如果数大了会特别不好求,接下来我们引出欧拉函数计算方法:分解公式n分解质因数后:n=p1^a1×p2^a2×p3^a3…pk^ak,(其中pi为质数)那么φ(n)=n
数论 之 欧拉函数篇
海风许愿
Acm算法c++算法数据结构c++开发语言
欧拉函数定义:1∼N中与N互质的数的个数被称为欧拉函数,记为ϕ(N)公式:若N=p1^a1*p2^a2*…*pk^ak所有的pi都是N的质因数那么ϕ(N)=N*(p1-1)/p1*(p2-1)/p2*…*(pk-1)/pk;性质:性质1:如果n是质数,那么ϕ(n)=n−1,因为只有n本身与它不互质。性质2:如果p,q都是质数,那么ϕ(p∗q)=ϕ(p)∗ϕ(q)=(p−1)∗(q−1)性质3:根据
acwing 质数 约数 欧拉函数
honortech
算法
目录质数试除法定质数分解质因数筛质数约数试除法求约数乘积的约数个数最大公约数欧拉函数筛法求欧拉函数和质数试除法定质数boolis_prime(intnum){if(num>n;for(intj=0;j>num;for(inti=2;i1)cout>n;for(inti=0;i>num;vectorret;//包含1和num本身for(intj=1;j>n;for(inti=0;i>num;for(
欧拉函数 笔记
Daniel_1011
笔记
复习:欧拉筛intcnt,prime[10000005],n;boolvis[100000005];voidolaprime(){vis[1]=1;for(inti=2;iusingnamespacestd;intcnt,prime[10000005],n,q,k;boolvis[100000005];voidolaprime(){vis[1]=1;for(inti=2;iusingnamespa
欧拉函数 笔记 2
Daniel_1011
笔记c++
莫比乌斯函数大于1的正整数,只要有平方因子,那么其莫比乌斯函数值就为0。f(n)={1n=1(−1)rnn=p1∗p2∗p3∗...∗pr0elsef(n)=\left\{\begin{matrix}1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n=1\\(-1)^rn~~~~~~n=p1*p2*p3*...*pr\\0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AcWing.873.欧拉函数
Die love 6-feet-under
算法c++数据结构
给定nnn个正整数ai,请你求出每个数的欧拉函数。欧拉函数的定义1∼NNN中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)。若在算数基本定理中,NNN=p1a1p2a2…pmam,则:ϕ(N)ϕ(N)ϕ(N)=NNN×p1−1p1\frac{p1−1}{p1}p1p1−1×p2−1p2\frac{p2−1}{p2}p2p2−1×…×pm−1pm\frac{pm−1}{pm}pmpm−1输入格式
RSA知识点及刷题记录
甜酒大马猴
密码学python笔记
Crypto密码学------RSARSA基础知识欧拉函数phi=(p-1)*(q-1)*(r-1)gmpy2.gcd(a,b)//欧几里得算法gmpy2.gcdext(a,b)//扩展欧几里得算法gmpy2.iroot(x,n)//x开n次根d=gmpy2.invert(e,pai)//求逆元,d*e=1(modpai)gmpy2.mpz(x)//初始化一个大整数xgmpy2.mpfr(x)//
算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理
lijiachang030718
算法算法学习
目录引言一、欧拉函数1.概念2.求每个数的欧拉函数二、线性筛法求欧拉函数三、欧拉定理,费马小定理引言本文主要介绍欧拉函数、线性筛法求欧拉函数,以及公式是怎样推导出来的,并且介绍了欧拉定理,以及费马小定理是怎样被推导出来的。一、欧拉函数1.概念欧拉函数ϕ(N):欧拉函数\phi(N):欧拉函数ϕ(N):1~N中与N互质的数的个数,(互质:公约数只有1的两个自然数)N=p1α1⋅p2α2⋅p3α3⋅⋯
【数学】简化剩余系、欧拉函数、欧拉定理与扩展欧拉定理
OIer-zyh
数学#数论OI数学数论
简化剩余系与完全剩余系略有区别。我们定义数组ai(1≤i≤n)a_i(1\lei\len)ai(1≤i≤n)为模mmm的简化剩余系,当且仅当∀1≤i,j≤n\forall1\lei,j\len∀1≤i,j≤n,有ai≢aj(modm)a_i\not\equiva_j\pmodmai≡aj(modm),∀1≤i≤n\forall1\lei\len∀1≤i≤n,有gcd(m,ai)=1\gcd(
C++ 数论相关题目(欧拉函数、筛法求欧拉函数)
伏城无嗔
数论力扣算法笔记c++算法开发语言
1、欧拉函数给定n个正整数ai,请你求出每个数的欧拉函数。欧拉函数的定义1∼N中与N互质的数的个数被称为欧拉函数,记为ϕ(N)。若在算数基本定理中,N=pa11pa22…pamm,则:ϕ(N)=N×p1−1p1×p2−1p2×…×pm−1pm输入格式第一行包含整数n。接下来n行,每行包含一个正整数ai。输出格式输出共n行,每行输出一个正整数ai的欧拉函数。数据范围1≤n≤100,1≤ai≤2×10
Acwing - 算法基础课 - 笔记(数学知识 · 二)
抠脚的大灰狼
算法Acwing算法基础课算法数论
文章目录数学知识(二)欧拉函数公式法筛法欧拉定理快速幂扩展欧几里得算法中国剩余定理数学知识(二)这一小节主要讲解的内容是:欧拉函数,快速幂,扩展欧几里得算法,中国剩余定理。这一节内容偏重于数学推导,做好心理准备。欧拉函数公式法什么是欧拉函数呢?欧拉函数用ϕ(n)\phi(n)ϕ(n)来表示,它的含义是,111到nnn中与nnn互质的数的个数比如,ϕ(6)=2\phi(6)=2ϕ(6)=2,解释:1
【算法基础 & 数学】欧拉函数
为梦而生~
基础算法算法数学欧拉函数蓝桥杯
题目描述给定nnn个正整数aia_iai,请你求出每个数的欧拉函数。输入格式第一行包含整数nnn。接下来nnn行,每行包含一个正整数aia_iai。输出格式输出共nnn行,每行输出一个正整数aia_iai的欧拉函数。数据范围1≤n≤1001≤n≤1001≤n≤100,1≤ai≤2×1091≤a_i≤2×10^91≤ai≤2×109样例输入样例:3368输出样例:224定义φ(n)\varphi(n
数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
数论知识学习总结(二)
Nie同学
acwing学习总结c++
文章目录一、欧拉函数1.欧拉函数2.筛法求欧拉函数(采用筛质数的线性筛法)二、快速幂1.快速幂2.快速幂求逆元三、扩展欧几里得算法1.扩展欧几里得算法2.线性同余方程四、中国剩余定理1.表达整数的奇怪方式一、欧拉函数在数论,对正整数nnn,欧拉函数是小于等于nnn的正整数中与nnn互质的数的数目.1.欧拉函数1∼N1\simN1∼N中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)\phi(N)
【数论】一些数论知识
ssllth
数论&数学数论同余约数欧拉定理费马小定理
文章目录前言内容素数关于素数无限个的证明n以内的素数个数算术基本定理约数一个数的正约数个数(约数个数定理)一个数的正约数和(约数和定理)最大公约数和最小公倍数gcd(a,b)*lcm(a,b)=a*b的证明更相减损术欧几里得算法欧拉函数积性函数一些性质同余一些性质欧拉定理费马小定理贝祖定理(裴蜀定理)代码求通解ax+by=nax+by=nax+by=n方程的主要解题步骤线性同余方程乘法逆元线性求逆
大数据安全 | 期末复习(上)| 补档
啦啦右一
#大数据安全大数据与数据分析单例模式
文章目录概述⭐️大数据的定义、来源、特点大数据安全的含义大数据安全威胁保障大数据安全采集、存储、挖掘环节的安全技术大数据用于安全隐私的定义、属性、分类、保护、面临威胁安全基本概念安全需求及对应的安全事件古典密码学里程碑事件扩散和混淆的概念攻击的分类模运算移位加密仿射加密维吉尼亚密码DES混淆与扩散Feistel加密DES密钥生成DES流程数论欧几里得算法拓展欧几里得算法欧拉函数有限域运算AES密钥
算法归纳总结(第五天)(数论、数学知识(第一部分)总结)
乘风破浪的咸鱼君
算法c++
目录一、筛质数(与试除法)1、普通筛法2、埃筛法3、线性筛法4、试除法①、试除法代码二、约数1、试除法求约数2、最大公约数①、辗转相除法(欧几里得算法)3、约数个数4、约数之和三、欧拉函数1、普通筛求欧拉函数①、欧拉函数定义②、应用公式。③、代码实现2、线性筛求欧拉函数①、线性筛法②、求欧拉函数四、快速幂与求逆元1、快速幂2、快速幂求逆元五、扩展欧几里得算法与线性同余方程1、扩展欧几里得算法①、裴
欧拉函数和欧拉定理
云儿乱飘
数学知识数论
873.欧拉函数-AcWing题库#includeusingnamespacestd;intmain(){intn;cin>>n;while(n--){inta;cin>>a;intret=a;for(inti=2;i1)ret-=ret/a;cout#includeusingnamespacestd;constintN=1e6+10;intp[N]={0};vectorv,st(N);intma
数学之美 第十七章 RSA加密算法
A黄橙橙
预备知识:欧拉函数在数论,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(其中φ(1)=1)通式为:其中p1,p2...pn为x所有质因数,x是不为0的整数。特殊:若n为质数p的k次幂,因为除了p的倍数外,其他数都与n互质。欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)当n为奇数时,φ(2n)=φ(n)当n为质数时,φ(n)=n-1P.S.积性函数:对于任意互质的
AcWing--互质数的个数-->数论(欧拉函数)
芝士小熊饼干
ACWing算法python欧拉函数
AcWing4968.互质数的个数-AcWing(python)#输入a,b=map(int,input().split())mod=998244353#快速幂取模模板:defqmi(a,b):res=1while(b):if(b&1):res=res*a%moda=a*a%modb>>=1returnres#欧拉函数#质因数#判断特例if(a==1):print(0)else:res=ax=a#
java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
遍历的方法
百合不是茶
遍历
遍历
在java的泛
linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&