- 最小生成树个数
兔猪猪兔
矩阵算法矩阵树最小生成树计数
今天练习最小生成树时做到这样一个题1150.最小生成树计数-AcWing题库一个很裸的求最小生成树个数的题,搜题解发现矩阵树来求解很好,关于图论的结论一般证明都非常麻烦,而且我觉得会用就好,这里附上大佬的证明,矩阵树定理及其无向图形式证明--洛谷博客,我们只取其中的结论部分首先,定义一些东西对于无向图,定义D(G)为图G的度数矩阵,其中:(deg是度数的意思)定义A(G)为图G的邻接矩阵,其中:t
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 算法学习笔记:概率与期望
Plozia
数学/数论学习笔记+专项训练
概率与期望1.前言2.定义3.理解4.期望方程5.总结1.前言概率我们很熟,在数学课本里面我们就已经学到过概率的基本定义以及计算方式。期望我们不熟,他与概率密切相关,计算方式基于概率。2.定义概率的计算方式不必我多说,各位在数学课中都有了解。而期望,从某种意义上来讲其实就是一个加了权值的概率。我将使用一个例子来说明期望是什么:假设某一天小z有一场满分为100分的数学考试。他妈妈说:“儿子,如果你能
- [算法学习笔记](超全)概率与期望
L('ω')┘脏脏包└('ω')」
c++题解算法
引子先来讲个故事······话说在神奇的OI大陆上,有一只papermouse有一天,它去商场购物,正好是11.11,商店有活动它很荣幸被选上给1832抽奖在抽奖箱里,有3个篮蓝球,12个红球papermouse能抽3次蒟蒻的papermouse就疑惑了:抽到至少1个篮蓝球的概率是多少???Answer:总共有15个球只抽到1个篮蓝球的概率是0.435165(很好理解吧,在4个篮蓝球里取一个,再在
- 专题·数学概率与期望【including 条件概率,贝叶斯定理, 全概率公式,数学期望, 绿豆蛙的归宿
樱狸❀
数论数论数学期望概率
初见安~~~又开启数论的探索啦~~:)一。概率1.基本定义在概率论中,我们把一个随机事件的一个可能结果称为其样本点,其所有样本点构成的集合称之为样本空间。(注意,随机事件并不一定只有一种可能结果)在样本空间中,我们称事件所包含的子集为随机事件。概率的定义就很简单了,我们也都知道样本空间中的任意随机事件的概率不会超过1不会小于0.就比如我们抛硬币连续扔三次(不考虑侧面稳落地),有8中可能:AAA,A
- 第十六章 隐马尔科夫模型
小酒馆燃着灯
机器学习手写AI深度学习机器学习
文章目录简介概念随机变量与随机过程马尔可夫链隐含马尔可夫模型两个基本假设三个基本问题算法观测序列生成算法概率计算算法前向概率与后向概率前向算法后向算法小结概率与期望学习问题监督学习方法Baum-Welch算法预测算法近似算法(MAP)维特比算法(Viterbi)简介动态贝叶斯网络的最简单实现隐马尔可夫模型。HMM可以看成是一种推广的混合模型。序列化建模,打破了数据独立同分布的假设。有些关系需要理清
- 【学习笔记】[ABC323G] Inversion of Tree
仰望星空的蚂蚁
线性代数学习笔记
前置知识:矩阵树定理,特征多项式省流:板子缝合题。可以复习一下线性代数的基本知识。定义Pu>PvP_u>P_vPu>Pv的边价值为xxx,Pun>n>n就寄了。因为都是板子,所以建议多看一下代码。注意行和列都要进行操作。复杂度O(n3)O(n^3)O(n3)。#include#definelllonglong#definepbpush_back#definefifirst#defineseseco
- 矩阵树定理
_fairyland
图论算法
构造一个拉普拉斯矩阵:对于边(u,v)(u,v)(u,v),矩阵a[u][u]a[u][u]a[u][u]++,a[v][v]a[v][v]a[v][v]++,a[u][v]a[u][v]a[u][v]–,a[v][u]a[v][u]a[v][u]–,去掉最后一行最后一列,求行列式(取模用辗转相除),即图的生成树个数矩阵树求的是:∑T∏e∈Tpe\sum_T\prod_{e\inT}p_e∑T∏e
- Algorithm Review 9 数学相关
Log_x
学习笔记概率论算法
概率与期望结论1设xxx为离散随机变量,且x∈Nx\in\mathbbNx∈N,则E(x)=∑i=1∞i⋅P(x=i)=∑i=1∞P(x≥i)E(x)=\sum\limits_{i=1}^{\infty}i·P(x=i)=\sum\limits_{i=1}^{\infty}P(x\gei)E(x)=i=1∑∞i⋅P(x=i)=i=1∑∞P(x≥i)。树上随机游走给定一棵树,从树中的某点xxx出发,
- 矩阵树定理||高斯消元求行列式
Yjmstr
学习笔记矩阵树定理
参考链接-博客园参考链接-oiwiki定理部分并没有什么原创内容,全是阅读上面两篇文章做的笔记。矩阵树定理KirchhoffKirchhoffKirchhoff矩阵树定理(简称矩阵树定理)解决了一张图的生成树个数计数问题。矩阵树定理有很多形式,以下内容是一些声明。应用矩阵树定理的图允许重边,但是不允许自环。以下内容是照抄oiwiki的无向图情况:设GGG是一个有nnn个顶点的无向图。定义度数矩阵D
- 矩阵树定理复习与简要证明
EasternCountry
基础算法算法
矩阵树定理用处计算无向图的生成树个数。命题&简要证明矩阵树定理:给定一个有n个点的图G的邻接矩阵A和度数矩阵B(就是B[i][i]B[i][i]B[i][i]表示i这个点的出度,其他位置均为0),记S为G的生成树个数。设T为B-A,记T划去第k行和第k列的矩阵为P(1y,则意味着一定不会有p[y]=y,所以y也一定会有一条出边,最终一定会形成一个环。有环非简单环就意味着有一个点至少有两个出边,这个
- SPSS卡方检验结果解读详解
nekonekoboom
SPSS
卡方检验(Chi-SquareTest)是由Pearson提出的一种统计方法,在一定的置信水平和自由度下,通过比较卡方统计量和卡方分布函数概率值,判断实际概率与期望概率是否吻合,通过比较理论概率和实际概率的吻合程度,可检验两个分类变量的相关性。用户可利用SPSS软件方便的完成卡方检验,在SPSS软件中,默认H0成立,即观察频数和实际频数无差别,即两组变量相互不产生影响,两组变量不相关,如果检验P值
- 算法学习笔记:概率/期望 DP
Plozia
动态规划学习笔记+专项训练算法动态规划数据结构
算法学习笔记:概率/期望DP1.前言2.例题3.练习题1.前言概率/期望DP,是一种DP,用来计算概率或者是期望。其实我认为这种DP就是计算期望的,毕竟概率可以看成代价为1的期望。没有学过期望的读者可以看看这篇文章:算法学习笔记:概率与期望而概率/期望DP,最关键的就是期望方程。下面看一道例题。2.例题CF1265EBeautifulMirrors以这题为例,详细讲解期望DP的一般套路。为了方便,
- NOI2021信息竞赛学习笔记
andyc_03
线性代数图论算法
一.图论1.仙人掌问题(圆方树)2.矩阵树定理3.网络流4.基环树二、数据结构1.线段树2.左偏树3.树链剖分4.主席树5.树套树6.长链剖分7.LCT三、数学1.欧拉函数|(扩展)欧拉定理|欧拉反演2.线性筛3.莫比乌斯反演4.FFT&NTT5.生成函数6.多项式全家桶7.单位根反演8.FWT9.拉格朗日插值10.线性基11.burnside&polya四、字符串1.后缀数组2.后缀自动机3.序
- 隐马尔可夫模型 (hidden Markov model, HMM)
连理o
机器学习概率论自然语言处理机器学习
本文为《统计学习方法》的读书笔记目录隐马尔可夫模型的基本概念隐马尔可夫模型的定义观测序列的生成过程隐马尔可夫模型的3个基本问题概率计算算法直接计算法前向算法(forwardalgorithm)后向算法(backwardalgorithm)一些概率与期望值的计算学习算法监督学习方法Baum-Welch算法(无监督学习方法)预测算法近似算法维特比算法(Viterbialgorithm)隐马尔可夫模型的
- 机器学习算法(十七):隐马尔科夫模型(HMM)
意念回复
机器学习机器学习算法机器学习
目录1隐马尔科夫模型1.1模型概念1.2定义1.3隐马尔科夫模型的两个性质1.4盒子与球模型1.5三个基本问题2概率计算算法2.1直接计算法2.2前向算法2.3后向算法2.4一些概率与期望值的计算3学习算法3.1监督学习方法3.2Baum-Welch算法3.3Baum-Welch模型参数估计公式4预测算法4.1近似算法4.2维比特算法5总结马尔科夫链:机器学习算法(十六):马尔科夫链_意念回复的博
- 机器学习面试题——朴素贝叶斯
冰露可乐
机器学习深度学习朴素贝叶斯贝叶斯公式大厂笔试面试题
机器学习面试题——朴素贝叶斯提示:这些知识点也是大厂笔试经常考的题目,我记得阿里和京东就考!!!想必在互联网大厂就会用这些知识解决实际问题朴素贝叶斯介绍一下朴素贝叶斯优缺点贝叶斯公式朴素贝叶斯中的“朴素”怎么理解?什么是拉普拉斯平滑法?朴素贝叶斯中有没有超参数可以调?你知道朴素贝叶斯有哪些应用吗?朴素贝叶斯对异常值敏不敏感?频率学派与贝叶斯学派的差别概率与期望的公式先验概率与后验概率文章目录机器学
- [NOI2005] 聪聪与可可
Sito_Ask
NOI2005聪聪与可可~~机器猫の传送门~~期望DP+记搜聪聪一直在向可可方向追,所以不会回到原处,不具有后效性,考虑用概率与期望DP+记忆化搜索求解用dp[x][y]表示可可在x点,聪聪在y点时步数的期望值判断边界①当x==y时结束(此时毫无疑问的,dp[x][y]=0)②当
- 2019暑期计划 / 每日刷题记录
weixin_30951743
计划##1.复习与提高###动态规划-数位DP-树形DP###图论-Tarjan-拓扑序的应用-树链剖分-点分治-树上距离-网络流/费用流###数据结构-平衡树-主席树-ST表###数论-整数研究-组合数学-概率与期望##2.新知学习###离线算法-CDQ分治-整体二分###数据结构-线段树扩展操作-树套树-LCT###图论-基环树每日刷题记录转载于:https://www.cnblogs.com
- 一文读懂NLP之隐马尔科夫模型(HMM)详解加python实现
Elenstone
NLP算法详解机器学习算法nlp
一文读懂NLP之隐马尔科夫模型(HMM)详解加python实现1隐马尔科夫模型1.1HMM解决的问题1.2HMM模型的定义1.2.1HMM的两个假设1.2.2HMM模型1.3HMM模型的三个基本问题2概率计算问题及算法2.1直接计算法2.2前向算法2.3后向算法2.4一些概率与期望值的计算3模型训练问题及算法3.1监督学习——最大似然估计3.2非监督学习——EM算法3.3Baum-Welch算法4
- 真正的决策都是不确定性决策
蓝色多莉
阅读笔记第126/365天今日阅读《升维——不确定时代的决策博弈》作者:【澳】王珞第3章:真正的决策都是不确定性决策一、企业利润来源于不确定性。1、什么是不确定性?风险是能被计算概率与期望值的是基于已经发生的事件的统计,而不确定性是无法被预见的,即使能被预见,其发生的概率也不能被计算的未来事件。不确定性事件是不可预见,没有概率的,包括灾难、命运、前景等一切未来可能发生的事件,是每个个体未来都要共同
- 【模拟赛】星际联邦 federation (矩阵树定理,线性代数,循环行列式)
DD(XYX)
数学图论C++算法线性代数矩阵树定理行列式
题面题解如果我们把这个www定义为某一种距离的follow可连的边数,那么就很清楚了:对于所有1≤i,j≤n1\leqi,j\leqn1≤i,j≤n,iii向jjj连有wi−j+nmod nw_{i-j+n\modn}wi−j+nmodn条有向边,而每个点向0号点连有1条有向边。求以0为根的内向生成树个数。直接上矩阵树定理,由于最终求余子式,干脆就忽略0号点,那么答案就是det[1+∑w−w1
- 解题报告(十七)概率与期望(概率论)(ACM / OI)
繁凡さん
【解题报告】-超高质量题单+题解概率与期望《概率论》
繁凡出品的全新系列:解题报告系列——超高质量算法题单,配套我写的超高质量题解和代码,题目难度不一定按照题号排序,我会在每道题后面加上题目难度指数(1∼51\sim51∼5),以模板题难度111为基准。这样大家在学习算法的时候就可以执行这样的流程:%阅读我的【学习笔记】/【算法全家桶】学习算法⇒\Rightarrow⇒阅读我的相应算法的【解题报告】获得高质量题单⇒\Rightarrow⇒根据我的一句
- 生成树计数 --- Matrix-Tree定理(基尔霍夫矩阵树定理)
Anxdada
定理证明请点这,多看几遍就懂了模板题点这题目大意:*一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路;*需要有选择的修建一些高速公路,从而组成一个交通网络;*计算有多少种方案,使得任意两座城市之间恰好只有一条路径;模板:#include#include#include#include#include#definelllonglongusingnamespacestd;co
- 概率与期望习题总结
总结概率题一般正着推期望题一般倒着推图上的问题如果是\(DAG\)可以直接转移否则可能要用到高斯消元\(20\)的数据范围大概率是装压有些看似无限循环的式子其实可以倒着递推1、骰子基础版题目描述众所周知,骰子是一个六面分别刻有一到六点的立方体,每次投掷骰子,从理论上讲得到一点到六点的概率都是\(1/6\)。今有骰子一颗,连续投掷\(N\)次,问点数总和大于等于\(X\)的概率是多少?输入仅有一行包
- HDU 4254 A Famous Game(概率与期望)
clover_hxy
组合数学概率与期望
题目描述传送门题目大意:一个口袋里有n个红色或蓝色的球。n+1种颜色分布情况(i个红球n−i个蓝球)的概率是相等的。B从口袋中不放回地摸出了p个球,其中有q个是红色的。求B再摸一个球时,摸出的球是红色的概率。题解设Nk表示n个球中有k个红球的概率。A表示p个球中有q个红球B表示下次摸出的是红球那么P(Nk)=1n+1P(A)=C(k,q)C(n−k,p−q)C(n,p)P(B|ANk)=k−qn−
- HDU 5753 Permutation Bo (概率与期望)
等我学会后缀自动机
HDU习题集规律/递推概率论/博弈论
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5753#includeusingnamespacestd;#definedebugputs("YES");#definerep(x,y,z)for(int(x)=(y);(x)#definemk(x,y)make_pair(x,y)#definefifirst#definesesecondconstin
- 【bzoj4031】 HEOI2015小Z的房间 矩阵树定理
qingdaobaibai
线性代数图论
第一次做矩阵树定理的题,其实就是记了个结论也没太看证明,然后学了学怎么用高斯消元求行列式,整数消元还真别扭,要用辗转相除,然后要注意取模的问题,一开始以为hzwer写麻烦了,后来想了想不加外面那句话会有问题,因为取模了。#include#include#include#include#include#include#definemod1000000000usingnamespacestd;intd
- [矩阵树定理][HEOI2015]小Z的房间
romiqi_new
矩阵树定理
传送门矩阵树定理:一张图的基尔霍夫矩阵即为其度数矩阵-邻接矩阵,度数矩阵中D[i][i]D[i][i]D[i][i]为点i的度一张图的生成树个数即为其基尔霍夫矩阵的行列式Code:#include#defineintlonglong#defineN90#definemod1000000000usingnamespacestd;intn,m,f[N][N];inttot,Map[N][N];void
- bzoj4031: [HEOI2015]小Z的房间
OI界第一麻瓜
矩阵树定理
题目大意就是生成树计数问题题解矩阵树定理题表和定理大意CODE:#include#include#include#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9;constLLN=105;LLn,m;LLidx[N][N],id=0;charss[N][N];LLd[N][N],a[N][N];LLc[N][N];//度数是否有边
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟