- 【密码学RSA】共模攻击原理详解_已知e1*e2的共模攻击题
malloc_冲!
rsa密码学
本题需要了解共模攻击推导过程及原理:1.共模攻击原理共模攻击即用两个及以上的公钥(n,e)来加密同一条信息m已知有密文:c1=pow(m,e1,n)c2=pow(m,e2,n)条件:当e1,e2互质,则有gcd(e1,e2)=1根据扩展欧几里德算法,对于不完全为0的整数a,b,gcd(a,b)表示a,b的最大公约数。那么一定存在整数x,y使得gcd(a,b)=ax+by所以得到:e1*s1+e2*
- 数论知识点总结(一)
Mark 85
数学数论算法数据结构
文章目录目录文章目录前言一、数论有哪些二、题法混讲1.素数判断,质数,筛法2.最大公约数和最小公倍数3.快速幂4.约数前言现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣!一、数论有哪些数论原根,素数判断,质数,筛法最大公约数,gcd扩展欧几里德算法,快速幂,exgcd,不定方程,进制,中国剩余定理,CRT,莫比乌斯反演,逆元,Lucas定理,类欧几里得算法,调和级数
- 算法基础-数学知识-欧拉函数、快速幂、扩展欧几里德、中国剩余定理
chirou_
算法c++蓝桥杯欧几里德欧拉函数
算法基础-数学知识-欧拉函数、快速幂、扩展欧几里德、中国剩余定理欧拉函数AcWing874.筛法求欧拉函数快速幂AcWing875.快速幂AcWing876.快速幂求逆元扩展欧几里德(裴蜀定理)AcWing877.扩展欧几里得算法AcWing878.线性同余方程中国剩余定理欧拉函数互质就是两个数的最大公因数只有1,体现到代码里面就是a和b互质,则bmoda=1moda(目前我不是很理解,但是可以这
- 扩展欧几里德求解ax + by = c 的 最小正整数解 ( x, y)
枸杞柠檬茶
ACM扩展欧几里得
大概思路:第一步:给出方程ax+by=c。第二步:算出辗转相除法gcd(a,b)。第三步:运用扩展欧几里德ex_gcd(a,b)-》ax+by=gcd(a,b)的一组解(x,y)。第三步:根据c%gcd(a,b)判断是否ax+by=c有解。第四步:根据ax+by=c的通解公式x1=(x+k*(b/gcd(a,b)))*(c/gcd(a,b)令b1=b/gcd(a,b),所以x1的最小正整数解为:x
- 扩展欧几里德算法详解以及乘法逆元
Stray_Lambs
数学acm扩展算法
转载网址:http://blog.csdn.net/zhjchengfeng5/article/details/7786595有些地方看不懂,但觉得写的很棒,先转载下来,以后慢慢研究……扩展欧几里德算法:谁是欧几里德?自己百度去先介绍什么叫做欧几里德算法有两个数ab,现在,我们要求ab的最大公约数,怎么求?枚举他们的因子?不现实,当ab很大的时候,枚举显得那么的naïve,那怎么做?欧几里德有个十
- Python算法设计 - 拓展欧几里得算法
小鸿的摸鱼日常
python算法设计算法python
目录一、拓展欧几里得算法二、Python算法实现三、作者Info一、拓展欧几里得算法扩展欧几里德算法是数论中最经典的算法之一,其目的用来解决不定方程。用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=GCD(a,b)什么是不定方程?不定方程(丢番图方程)是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等)的方程或方程组。二、Python算法实现defg
- 最大公约数
敲可爱的小超银
.欧几里德算法和扩展欧几里德算法欧几里德算法欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:定理:gcd(a,b)=gcd(b,amodb)证明:a可以表示成a=kb+r,则r=amodb假设d是a,b的一个公约数,则有d|a,d|b,而r=a-kb,因此d|r因此d是(b,amodb)的公约数假设d是(b,amodb)的公约数,则d|b,d|r,但是a
- 扩展欧几里德
JesHrz
扩展欧几里得求解不定方程ax+by=gcd(a,b)的整数解对于方程ax+by=c,如果gcd(a,b)|c,则有解,解为ax+by=gcd(a,b)的解乘以c/gcd(a,b);否则无解longlongexgcd(longlonga,longlongb,longlong&x,longlong&y){if(!b){x=1;y=0;returna;}longlongt=exgcd(b,a%b,y,x
- 数论
weixin_30381317
c/c++数据结构与算法
目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b.筛选法
- 除等数论
じ☆夏妮国婷☆じ
算法除等数论
除等数论目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b
- 第二十九章 数论——中国剩余定理与线性同余方程组
Turing_Sheep
算法合集算法
第二十九章数论——中国剩余定理与线性同余方程组一、中国剩余定理1、作用:2、内容:3、证明:(1)逆元的存在性(2)验证定理的正确性4、代码实现:(1)步骤:(2)问题:(3)代码:一、中国剩余定理1、作用:我们上一章节中,详细地讲解了如何利用扩展欧几里德算法解一个线性同余方程,但是如果我们遇到了线性同余方程组的话,我们就需要用到今天所讲解的中国剩余定理。但是中国剩余定理的成立前提是,方程组中的模
- 第二十八章 数论——扩展欧几里德算法与线性同余方程
Turing_Sheep
算法合集算法
第二十八章扩展欧几里德算法一、裴蜀定理1、定理内容2、定理证明二、扩展欧几里德定理1、作用2、思路3、代码三、线性同余方程1、问题2、思路3、代码一、裴蜀定理1、定理内容对于任意整数aaa和bbb,一定存在整数xxx,yyy使得ax+byax+byax+by是gcd(a,b)gcd(a,b)gcd(a,b)的倍数。如果反过来说的话,如果m=ax+bym=ax+bym=ax+by,那么mmm一定是g
- 第二十七章 数论——快速幂与逆元
Turing_Sheep
算法合集算法
第二十七章快速幂与扩展欧几里德算法一、快速幂1、使用场景2、算法思路(1)二进制优化思想(2)模运算法则3、代码实现(1)问题(2)代码二、快速幂求逆元1、什么是逆元?(1)同余(2)逆元2、逆元的求法(1)欧拉定理(2)费马小定理(3)问题(4)求解逆元一、快速幂1、使用场景我们知道,如果我们想计算一个qkq^kqk,我们可以不断地去乘,但这样的时间复杂度是O(k)O(k)O(k),这个是复杂度
- 数论入门基础(同余定理/费马小定理/扩展欧几里德算法/中国剩余定理)
Allen_0526
数论同余定理费马小定理Exgcd中国剩余定理
本文整理了同余定理/费马小定理/扩展欧几里德算法/中国剩余定理基本的念描述、结论证明和模板应用同余定理1.描述:同余定理是数论中的重要概念。给定一个正整数m,如果两个整数a和b满足(a-b)能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(modm)。2.符号:两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对模m同余或a同余于b模m。记作a≡b(mo
- 夜深人静写算法(三)- 初等数论入门
英雄哪里出来
夜深人静写算法算法线性同余初等数论ACM数学
文章目录一、前言二、数论基本概念1、整除性2、素数1)素数与合数2)素数判定3)素数定理4)素数筛选法3、因数分解1)算术基本定理2)素数拆分3)因子个数4)因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余1)模运算2)快速幂取模3)循环节二、数论基础知识1、欧几里德定理(辗转相除)2、扩展欧几里德定理1)线性同余2)同余方程求解3)逆元3、中国剩余定理4、欧拉函数1)互素2)筛选法求
- 51nod 算法马拉松 集合计数
Dorkdomain
列出等式之后发现是二元一次不定式求正整数解然而并不会求解枚举肯定超时经过一番搜索发现是扩展欧几里德然后现学现卖了一下然而边界问题涉及到四个实数化整并求交集需要考虑的太多一时考虑不清楚决定暴力枚举然后只过了一半数据只好又回头处理边界问题静下心来仔细一思考边界问题也并不是那么难处理集合计数SystemMessage(命题人)基准时间限制:1秒空间限制:131072KB分值:20给出N个固定集合{1,N
- 最大公约数(Gcd)两种算法(Euclid && Stein) [整理]
weixin_33832340
很老的东东了,其实也没啥好整理的,网上很多资料了,就当备用把:-)1.欧几里德算法和扩展欧几里德算法欧几里德算法欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:定理:gcd(a,b)=gcd(b,amodb)证明:a可以表示成a=kb+r,则r=amodb假设d是a,b的一个公约数,则有d|a,d|b,而r=a-kb,因此d|r因此d是(b,amodb)
- C语言如何求最大公约数?错觉?C语言两行代码描述辗转相除法
莫影老师
C语言小题目大智慧公约数C语言C语言编程C语言学习C语言试题
前言本文主要介绍的是C语言常规的一道题,希望对于广大读者学习C语言有一些帮助。使用C语言求解a和b的最大公约数。该问题可以采用辗转相除法去解决!辗转相除法欧几里德算法又称辗转相除法,欧几里德算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里德在其著作《TheElements》中最早描述了这种算法,所以被命名为欧几里德算法。扩展欧几里德算法可用于RSA加密等领域。假如需要求1997和615两
- 扩展欧几里德 中国剩余定理 合并模线性方程组
foreverlin1204
数学天地
1.1.1扩展欧几里得要说扩展必须先从它的非扩展版本说起,对于求两个数的最大公约数,我们有辗转相除法,其核心就是gcd(a,b)=gcd(b,a%b)(a>=b)(1)为什么呢,我们来证明一下令a=k*b+t则a%b=t,若设d是a,b的一个公约数,a%d==0k*b%d==0又因为(k*b+t)%d==0所以t%d==0,这个d包含了a和b的最大公约数,于(1)得证。有了这个作为基础我们来看下扩
- 欧几里德算法、扩展欧几里德算法、乘法逆元
zixiaqian
转http://hi.baidu.com/dongxiang2007/blog/item/db9b98626ce722d5e6113a51.html欧几里德算法、扩展欧几里德算法、乘法逆元2009年05月22日星期五下午12:15最近看了一本书《程序员》里面说的一个面试题:求两个数的最大公约数:SoEasy的题目看过C的人都知道怎么写这个程序1.传统方法:穷举#includeintmain(){i
- ZOJ - 3609 Modular Inverse (扩展欧几里德求乘法逆元)
进修中的涵涵涵
扩展欧几里得
ModularInverseTimeLimit:2SecondsMemoryLimit:65536KBThemodularmodularmultiplicativeinverseofanintegeramodulomisanintegerxsuchthata-1≡x(modm).Thisisequivalenttoax≡1(modm).InputTherearemultipletestcases.
- 扩展欧几里德算法
??yy
voidgcd(inta,intb,int&d,int&x,int&y){if(!b){d=a;x=1;y=0;}else{gcd(b,a%b,d,y,x);y-=x*(a/b);}}扩展欧几里德算法的应用主要有以下三方面:(1)求解不定方程;(2)求解模线性方程(线性同余方程);(3)求解模的逆元;(1)使用扩展欧几里德算法解决不定方程的办法:对于不定整数方程pa+qb=c,若cmodGcd(p
- 扩展欧几里德算法求不定方程
yuxiaoyu.
例题是POJ1061青蛙的约会题目大意是,一个周长为L的圆,A、B两只青蛙,分别位于x、y处,每次分别能跳跃m、n,问最少多少次能够相遇,如若不能输出“Impossible”此题其实就是扩展欧几里德算法-求解不定方程,线性同余方程。设过k1步后两青蛙相遇,则必满足以下等式:(x+m*k1)-(y+n*k1)=k2*L(k2=0,1,2....)//这里的k2:存在一个整数k2,使其满足上式稍微变一
- 模数非互质的同余方程组(非互质版中国剩余定理)
weixin_30596343
之前介绍到的中国剩余定理只能求解模数两两互质的同余方程组。那么,模数如果不一定两两互质的情况应该怎么求呢?下面介绍通过合并方程的方法来解决问题(要用到扩展欧几里德算法)。顾名思义,合并方程就是把所有的同余方程组合并成一个。举个例子,合并同余方程组x%A=a①x%B=b②现在给出两种合并的方法:1)要把①②式合并成x%C=c③易知C一定是A和B的最小公倍数的倍数,否则不可能同时满足①②两式。这里我们
- 关于exgcd算法(扩展欧几里德算法)的几点总结
Object_S
EXGCD算法的概念:一种用来求解形如的同余方程的算法EXGCD算法的时间复杂度:求解的时间复杂度大约为EXGCD算法的代码:#include#includeusingnamespacestd;inta,b,x,y;voidexgcd(inta,intb){if(b==0){x=1,y=0;return;}exgcd(b,a%b);inttemp=x;x=y,y=temp-a/b*y;return
- 数论快速入门(同余、扩展欧几里德、中国剩余定理、大素数测定和整数分解、素数三种筛法、欧拉函数以及各种模板)
Must_so
ACM题解与算法ACM(算法)
数学渣渣愉快的玩了一把数论,来总结一下几种常用的算法入门,不过鶸也是刚刚入门,所以也只是粗略的记录下原理,贴下模板,以及入门题目(感受下模板怎么用的)(PS:文中亮色字体都可以点进去查看百度原文)附赠数论入门训练专题:点我打开专题(题目顺序基本正常,用以配套数论入门)一、同余定理同余式:a≡b(modm)(即a%m==b%m)简单粗暴的说就是:若a-b==m那么a%m==b%m这个模运算性质一眼看
- 欧几里得算法及其扩展以及运用
风灵无畏YY
数论gcdNOIPgcd
以下内容部分来自度娘,另一部分来自百度百科。扩展欧几里德算法liaoy这是本校一位学长关于扩展欧几里得的讲解,讲得很好,欢迎大家阅读【介绍】扩展欧几里德算法是用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=gcd(a,b)=d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。【欧几里得算法】一、概述欧几里德算法又称辗转相除法,用于计算两个整数a,b的
- A/B(逆元)
你就是根号四
数论
逆元定义:对于正整数和,如果有,那么把这个同余方程中的最小正整数解叫做模的逆元。一般用欧几里得扩展来做:ax+by=1;称a和b互为逆元详细扩展欧几里德算法介绍,解决该题的关键是:1、了解扩展欧几里德算法,可以运用其解出gcd(a,b)=ax1+by1中的x1、y1的值2、由题可得以下内容:n=A%9973,则n=A-k*9973。设A/B=x,则A=Bx。所以Bx-k*9973=n。即Bx-99
- 扩展欧几里德算法详解
ltrbless
ACM数学
1、问题引入:有一个经典的问题:直线上的点,求直线ax+by+c=0上有多少个整数点(x,y)满足x->(x1,x2),y->(y1,y2);怎么来找整数解,这时就可以利用扩展欧几里德算法.2、扩展欧几里德算法:先附上代码:voidexgcd(inta,intb,int&d,int&x,int&y){if(!b)d=a,x=1,y=0;else{exgcd(b,a%b,d,x,y);y-=x*(a
- 数论基础(gcd + 拓展欧几里得)
Southan97
AlgorithmsNumberTheoryMathematics
求连个数的最大公约数gcd:typedeflonglongll;constintMAXN=10000+7;llgcd(lla,llb){returnb?gcd(b,a%b):a;}拓展欧几里得:欧几里得定理:gcd(a,b)=gcd(b,a%b);gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)扩展欧几里德算法是用来在已知a,b求解一组x,y使得ax+by=Gcd(
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo