- openEuler—全球最具活力的操作系统开源社区之一
不要em0啦
开源人工智能linux华为
一、openEuler的身世openEuler的前身是华为的服务器操作系统EulerOS。为什么要叫Euler,可以追溯到1752年数学家欧拉所发现的欧拉公式。它将数学中几个重要的数字联系到了一起,在图论,复变函数等各个领域都有重大作用,是数学史上的里程碑。从欧拉公式的意义中,我们可以感觉到openEuler身上所携带的创新探索精神,以及成为里程碑式的操作系统开源社区的决心。从百年前数字之间的联系
- 分析“e^iπ+1=0”的错谬及其违反数学规则
刘亦叙
数学建模
如果评选从远古到现代对人类智商羞辱最严重的事件,欧拉公式“e^iπ=-1”若说第二、就没有哪个能称第一。看下面罗列的关系,数学伦理在大数学家欧拉眼里形同虚设:①“e^iπ=-1”没有代码,不能表示数量变化关系,它来自e^iθ=cosθ+isinθ;②e^iθ=cosθ+isinθ是e^ix=cosx+isinx的改写;③为什么要把e^ix=cosx+isinx写成e^iθ=cosθ+isinθ?原
- 高代绿皮第四版课后习题复习题一T16
czjylh
#第一章计算题精选线性代数
原题计算下列行列式的值解析思路:利用复变函数中的欧拉公式再由棣莫弗公式可知由二项式展开公式可得提取出其实部故有于是可以利用此公式将中第3至第n列元素进行展开最后用第一列消去其余列的非最高次项后再提出后n-2列的公因式注意到最后变成了Vandermonde行列式,运用公式求解即可参考解题细节:
- LaTeX基本公式语法
北辰2023
编辑器笔记经验分享
Markdown支持通过LaTeX插入复杂的数学公式。行内公式与块级公式行内公式:使用一对美元符号$...$标记:欧拉公式可以表示为eiπ+1=0e^{i\pi}+1=0eiπ+1=0,这是一个著名的等式。块级公式:使用一对双美元符号$$...$$标记:欧拉公式可以表示为eiπ+1=0e^{i\pi}+1=0eiπ+1=0这是一个著名的等式。基本语法简单符号基础符号直接输入:+,−,∗,/,a,0
- 欧拉公式在计算机图形学中的,计算机图形学 第九章课件.ppt
何振华何振华
欧拉公式在计算机图形学中的
《计算机图形学第九章课件.ppt》由会员分享,提供在线免费全文阅读可下载,此文档格式为ppt,更多相关《计算机图形学第九章课件.ppt》文档请在天天文库搜索。1、甘朝华第九章三维对象的表示9.1图形对象的定义及性质9.2三维图形对象的表示方法9.3规则欧氏几何对象表示9.4非规则对象表示9.5科学计算可视化随着计算机图形技术的飞速发展,人们对用计算机进行图形处理提出了更高的要求。根据构造图形对象的
- 全国大学生数学竞赛备考——高数上(极限、导数、微分、积分、级数)
我叫两万块
线性代数
我真的会忘(3)极限两个重要极限公式常用极限公式导数、微分与积分牛顿-莱布尼茨公式莱布尼兹公式微分中值定理罗马中值定理拉格朗日中值定理柯西定理泰勒公式几个常见的麦克劳林公式洛必达曲率曲率圆牛顿迭代法积分中值定理分部积分法级数正项级数审敛法绝对收敛和条件收敛交错级数莱布尼茨定理幂级数泰勒级数欧拉公式傅里叶级数全国大学生数学竞赛竞赛进程分为两个阶段,第一阶段为全国大学生数学竞赛初赛(也称为预赛、赛区赛
- FFT海水学习笔记
胡说ba道
学习笔记线性代数
学习笔记信号分析原理DFT:IDFT:F(μ)为转换后的频域函数,μ为频率,f(x)为时域函数用欧拉公式展开得https://www.bilibili.com/video/av49238862欧拉公式的理解http://k.sina.com.cn/article_6367168142_17b83468e001004j89.html?sudaref=graph.qq.com&display=0&re
- Learning in the Frequency Domain(频域)阅读笔记
海浪在开花
图像分类计算机视觉人工智能
1、背景知识1.1、频域频域相关知识:频谱、相位谱、傅里叶变换、欧拉公式等…傅里叶级数:任何周期函数都可以分解成一堆(无穷个)正弦函数Asin(wx+φ),又因为sin(a+b)=sinacosb+cosasinb,则对于任何周期函数可以分解为一堆正弦和余弦函数。傅里叶级数所做的工作:把{1,sinx,cosx,sin2x,cos2x,…,…}看成空间的基(原因:这组基的各部分之间是相互正交的,也
- 欧拉公式与复数的负指数表示形式
普林斯顿uu
数学物理方法学习经验分享
一、欧拉公式复数的复指数表示形式棣美弗公式二、欧拉公式的证明一、欧拉公式、复数的复指数表示形式、棣美弗公式二、欧拉公式的证明
- 【数值分析】常微分方程的数值解,欧拉公式,梯形公式,龙格库塔公式,matlab实现
你哥同学
数值分析matlab欧拉公式梯形公式龙格库塔
常微分方程初边值问题的数值解法2023年11月30日#analysis文章目录常微分方程初边值问题的数值解法存在惟一解差分公式的格式Euler公式梯形公式Euler中点公式改进Euler方法(预估-矫正公式)局部截断误差y(xn+1)−yn+1{y(x_{n+1})-y_{n+1}}y(xn+1)−yn+1龙格-库塔(Runge-Kutta)公式下链存在惟一解一阶常微分方程初值问题的一般形式为:{
- 第三章:常微分方程的差分方法
鲸落南北c
写在前面本章就是字面意思,解常微分方程,当然是特殊的情况,比如一些离散点和没办法用常规方法解的方程。3.1欧拉公式欧拉公式也是具有传递性的一个公式,由上一个y的值推出下一个:还可以用同一个形式的梯形公式表示:这里还有一个欧拉中点公式,又称双步欧拉公式,区间是[n-1,n+1],对应的右侧求积公式用中矩形求积公式:来一张对比图放这儿,当公式看吧!结合上述公式来一道例题:直接代入公式:3.2改进的欧拉
- 欧拉公式之美
davincill
学习
艺术以感性直观的方式观照文明体系之内在的人性质素,而宗教则表象为一种超验的神性,哲学则把文明中的人性质素作为文明的意义基础,将其阐发为纯碎的思。都是人类文明达到精神自觉的形式。而科学更是超乎经验近乎冷酷的美将宇宙的法则赤裸裸的展现。当第一个人类抬头仰望苍穹,看着星斗与银河熠熠生辉,眼眸中流露的好奇正是科学发展的种子。人类对自然的交互并企图将其运行法则理解,最原始的自然哲学诞生了。到了第一次工业革命
- 二阶常系数非齐次线性微分方程:类型二
Richard888888888
机器学习线性代数人工智能
或(1)(2)欧拉公式(3)设(3)有特解是(1)的特解是(2)的特解例:解所以其通解为这是属于上一篇提到的第一种情况其特解即简化-2a=1a=-1/2原方程特解为原方程通解为解法二将或改写为设是特征方程的k重根(k=0或1)则方程特解形如:其中m=max{n,l},指多项式的幂。用解法二重求例题解解所以其通解为i不是特征方程的根,k=0设为特解所以代入原式-acosx-bsinx-acosx-b
- 欧拉公式 e^iθ=cosθ+i*sinθ
挽 阳
学习笔记量子计算抽象代数
相信大多数人都知道大名鼎鼎的数学最美的公式:为什么说它是最美的呢?因为它包含了指数里最基本的e,复数里最基本的i,圆频率最基本的π,以及自然数里最基本的0和1。本质上这个公式是由这个公式推导过来的,把θ换成π即可。那么这个公式是如何得到的呢?可以使用高等数学里的幂级数展开,进而可以推导得出。把里的ix看成一个整体,根据麦克劳林展开式,把x换成ix代进去可以得到:我们把不含i的放一边,含i的放在另一
- 【控制工程】基础知识
嗯哼丶是你呀
检测与控制开发语言
目录一.电机二、传递函数(零极点)三.线性定常系统的稳定性和判定方法四.误差一、傅里叶变换、拉氏变换与传递函数1.欧拉公式的理解它的起源:观察、sinx、cosx的泰勒展开式,加上人为定义的i后,便能把他们联系起来,是-1的平方根。几何意义:引入坐标轴,与轴形成复平面,从向量的角度看,等价于把(1,0*i)绕原点逆时针旋转了角度x。2.傅里叶变换和拉氏变换的理解(1)傅里叶变换是余弦函数的探测器傅
- 数值分析-常微分方程初值问题数值解法
哥斯拉-
数值分析
常微分方程初值问题数值解法问题一、一阶常微分方程初值问题的有限差分方法与误差分析二、向前Euler法及误差分析1.向前Euler法2.误差分析3.后退Euler法三、改进欧拉公式四、单步法局部截断误差与阶五、龙格—库塔方法1.定义2.常用的龙格库塔方法六、单步法的收敛性与稳定性1.收敛性与相容性2.绝对稳定性与绝对稳定域问题一阶常微分方程的初值问题:y′=f(x,y)y^{'}=f(x,y)y′=
- 计算方法(六):常微分方程初值问题的数值解法
梅九九
计算方法
文章目录常微分方程初值问题的数值解法欧拉(Euler)方法与改进欧拉方法欧拉方法欧拉公式的局部截断误差与精度分析改进欧拉方法龙格-库塔(Runge-Kutta)法构造原理经典龙格-库塔法步长的自动选择收敛性与稳定性收敛性稳定性一阶方程组与高阶方程的数值解法一阶方程组初值问题的数值解法高阶方程初值问题的数值解法边值问题的数值解法打靶法有限差分法常微分方程初值问题的数值解法本文着重讨论一阶常微分方程初
- [常微分方程的数值解法系列二] 欧拉法
无比机智的永哥
常微分方程的数值解法欧拉法向前欧拉公式预估校正欧拉法欧拉法截断误差
欧拉法简介几何意义证明泰勒展开近似求导近似积分近似几种欧拉方式向前欧拉公式向后欧拉公式梯形公式中点公式截断误差求解过程向前欧拉公式例子向前欧拉公式在惯性导航以及VIO等实际问题中利用IMU求解位姿需要对IMU测量值进行积分得到需要的位置和姿态,其中主要就是求解微分方程。但之前求解微分方程的解析方法主要是应用于一些简单和特殊的微分方程求解中,对于一般形式的微分方程,一般很难用解析方法求出精确解,只能
- 【算法】FFT-1(递归实现)(不包括IFFT)
conti123
C++算法算法c++
FFT多项式多项式乘法复数及运算导数泰勒公式及展开式欧拉公式单位根FFTCodeIFFT多项式我们从课本中可以知道,一个n−1n-1n−1次的多项式可以写成a0+a1x+a2x2+a3x3+⋯+an−1xn−1a_{0}+a_{1}x+a_{2}x^2+a_{3}x^3+\dots+a_{n-1}x^{n-1}a0+a1x+a2x2+a3x3+⋯+an−1xn−1用高级一点的表示法就是:一个n−1
- 巴特沃斯一阶低通滤波器参数推导
MotionCtrl_Seven
信号处理
文章目录1.关于欧拉公式2.归一化频率3.巴特沃斯一阶低通滤波器参数推导z域与s域截止频率的关系Step1:确定阶数和s域表达式Step2:选取滤波器数字域的截止频率Step3:计算对应s域的截止频率Step4:去归一化Step5:双线性变换1.关于欧拉公式欧拉公式中的e就是自然对数的底数e欧拉公式不是仅仅是一种自定义的表示方法,是可以推导的首先将以下三个表达式用泰勒级数展开:ex=1+x+x22
- MATLAB程序设计:改进欧拉公式
揽阳°
matlab算法人工智能
clear;clc;closeall;symsxyf=exp(x^2);x0=0;y0=0;%(x0y0)为初值h=0.5;N=4;xi=x0:h:x0+h*N;yi=zeros(1,N);yi(1)=y0;fork=1:Nyi(k+1)=yi(k)+h*subs(f,{xy},{xi(k),yi(k)});yi(k+1)=yi(k)+h/2*(subs(f,{xy},{xi(k),yi(k)})
- 离散数学复习---第十七章 平面图【概念版】
Thomas_zzy
离散数学知识点图论
目录17.1平面图的基本概念17.2欧拉公式17.3平面图的判断17.4平面图的对偶图17.1平面图的基本概念定义17.1如果能将无向图G画在平面上使得除顶点外处处无边相交,则称G为可平面图,简称为平面图。画出的无边相交的图称为G的平面嵌入。无平面嵌入的图称为非平面图。定理17.1平面图的子图都是平面图,非平面图的母图都是非平面图。定理17.2设G为平面图,则在G中加平行边或环后所得的图还是平面图
- 微分方程的求解
satadriver
数学高等数学学习
思路和步骤:方程是否可以等式两边分离变量。积分是微分的逆运算,如果能将变量、积分变量分别化简移动到等号的两边,在等号两边各自对变量积分即可。齐次方程。高阶方程代换求解。三种常见的代换方法。一阶线性微分方程的通用解法。高阶线性微分方程求解。利用特殊指数函数y=erxy=e^{rx}y=erx代换求解。高阶线性微分方程的三角函数变换求解。主要利用了欧拉公式eix=cosx+isinxe^{ix}=
- 量子计算与量子密码(入门级-少图版)
是Yu欸
笔记量子计算密码学笔记安全AIGC课程设计学习
量子计算与量子密码写在最前面一些可能带来的有趣的知识和潜在的收获1、Introduction导言四个特性不确定性(自由意志论)Indeterminism不确定性Uncertainty叠加原理(线性)superposition(linearity)纠缠entanglement虚数的常见基本运算欧拉公式(Euler'sFormula):矩阵的常见基本运算酉矩阵U和厄米矩阵H2、Enterintothe
- 平面图欧拉公式应用:1026T2
Qres821
欧拉公式连通块
http://cplusoj.com/d/senior/p/SS231026B考虑如何维护黑色连通块恰为1这个条件。我们可以直接运用平面图的欧拉公式。对于“空腔”这个条件,我们可以先预处理,然后通过two-pointers+桶来实现#includeusingnamespacestd;#defineintlonglonginlineintread(){intx=0,f=1;charch=getcha
- 平面图欧拉公式
Qres821
连通欧拉公式
V−E+P=B+1V-E+P=B+1V−E+P=B+1VVV:点数EEE:边数PPP:面数(含外面)BBB:连通块数量通过这个我们可以处理网格图中的连通块数量问题上图中有7个点,8条边,3个面(包括外面),所以有7-8+3=1+1个连通块
- 量子计算与量子密码(入门级):课程笔记+PPT复习
是Yu欸
笔记网络安全1024程序员节笔记安全量子计算密码学信息与通信程序人生
量子计算与量子密码写在最前面一些可能带来的有趣的知识和潜在的收获1、Introduction导言四个特性不确定性(自由意志论)Indeterminism不确定性Uncertainty叠加原理(线性)superposition(linearity)纠缠entanglement虚数的常见基本运算欧拉公式(Euler'sFormula):矩阵的常见基本运算酉矩阵U和厄米矩阵H2、Enterintothe
- 计算机视觉(五):频率域滤波基础
大黄
计算机视觉傅里叶级数傅里叶变换频率域滤波基础
一、数学预备知识1.傅里叶级数二、基本概念1.频率域2.复数3.欧拉公式4.傅里叶级数5.取样三、傅里叶变换1.一维连续傅里叶变换2.一维离散傅里叶变换3.二维连续傅里叶变换4.二维离散傅里叶变换四、卷积1.定义2.一维卷积定理3.二维卷积定理五、傅里叶谱和相角六、频率域的其他特性更多内容关注公众号:数学的旋律tb店铺搜:FUNSTORE玩物社,专业买手挑选送礼好物一、数学预备知识1.傅里叶级数设
- 拉普拉斯变换与傅立叶变换的关系
河北一帆
算法
傅立叶变换从时域到频域,将时域信号转化为不同频率和幅值的正交三角函数基,根据欧拉公式,建立三角函数,复数,e之间的联系。傅立叶变换在某些函数时不可积,于是乘一个衰减函数,使得不可积的傅立叶变换可积。又因为拉普拉斯变换具有可以方便的解微分方程的优势,所以将其运用到控制系统的传递函数。
- 欧拉公式推导网格中点线面估计数量关系
闪电彬彬
图形学数学面试技巧几何学图形学欧拉公式
欢迎关注更多精彩关注我,学习常用算法与数据结构,一题多解,降维打击。背景之前面试网格算法工程师时被问到三角网格中点和面的数量关系。delaunay三角剖分要估计边的数量来事先申请内存。通过查找资料了解原理和推导过程。欧拉公式欧拉公式描述如下:V、E和F分别是点、边和面的个数。所有和一个球面同胚的多面体点边面的关系为:F−E+V=2F-E+V=2F−E+V=2半边数据结构在计算机图形学中,习惯使用半
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号