RSA算法是一个非对称加密算法,它依赖于数论中的大整数因数分解问题的困难性。在RSA中,加密和解密使用不同的密钥,分别称为公钥和私钥。RSA算法的基本原理包括以下几个步骤:密钥生成:a.选择两个大的质数(p)和(q)。b.计算它们的乘积(n=pq),n的长度就是密钥长度。c.计算欧拉函数(\phi(n)=(p-1)(q-1))。d.选择一个整数(e),使得(1
浅谈欧拉函数
gu_zhou_suo_li_weng
推荐算法算法
定义:首先说一下定义吧,φφφ(n)表示从nnn与xxx互质的数的个数。其中x∈[1,n]x\in[1,n]x∈[1,n]。初始值:φ(n)=nφ(n)=n
欧拉函数及其代码实现
acmakb
蓝桥杯算法c++数论
欧拉函数:欧拉函数定义:欧拉函数是指对于一个正整数n,小于等于n且和n互质的正整数(包括1)的个数,记作φ(n)。例如φ(8)=4,因为1,3,5,7均和8互质。性质:当n是质数的时候,显然有φ(n)=n-1.规定:φ(1)=1.但是如果数大了会特别不好求,接下来我们引出欧拉函数计算方法:分解公式n分解质因数后:n=p1^a1×p2^a2×p3^a3…pk^ak,(其中pi为质数)那么φ(n)=n
数论 之 欧拉函数篇
海风许愿
Acm算法c++算法数据结构c++开发语言
欧拉函数定义:1∼N中与N互质的数的个数被称为欧拉函数,记为ϕ(N)公式:若N=p1^a1*p2^a2*…*pk^ak所有的pi都是N的质因数那么ϕ(N)=N*(p1-1)/p1*(p2-1)/p2*…*(pk-1)/pk;性质:性质1:如果n是质数,那么ϕ(n)=n−1,因为只有n本身与它不互质。性质2:如果p,q都是质数,那么ϕ(p∗q)=ϕ(p)∗ϕ(q)=(p−1)∗(q−1)性质3:根据
acwing 质数 约数 欧拉函数
honortech
算法
目录质数试除法定质数分解质因数筛质数约数试除法求约数乘积的约数个数最大公约数欧拉函数筛法求欧拉函数和质数试除法定质数boolis_prime(intnum){if(num>n;for(intj=0;j>num;for(inti=2;i1)cout>n;for(inti=0;i>num;vectorret;//包含1和num本身for(intj=1;j>n;for(inti=0;i>num;for(
欧拉函数 笔记
Daniel_1011
笔记
复习:欧拉筛intcnt,prime[10000005],n;boolvis[100000005];voidolaprime(){vis[1]=1;for(inti=2;iusingnamespacestd;intcnt,prime[10000005],n,q,k;boolvis[100000005];voidolaprime(){vis[1]=1;for(inti=2;iusingnamespa
欧拉函数 笔记 2
Daniel_1011
笔记c++
莫比乌斯函数大于1的正整数,只要有平方因子,那么其莫比乌斯函数值就为0。f(n)={1n=1(−1)rnn=p1∗p2∗p3∗...∗pr0elsef(n)=\left\{\begin{matrix}1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n=1\\(-1)^rn~~~~~~n=p1*p2*p3*...*pr\\0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AcWing.873.欧拉函数
Die love 6-feet-under
算法c++数据结构
给定nnn个正整数ai,请你求出每个数的欧拉函数。欧拉函数的定义1∼NNN中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)。若在算数基本定理中,NNN=p1a1p2a2…pmam,则:ϕ(N)ϕ(N)ϕ(N)=NNN×p1−1p1\frac{p1−1}{p1}p1p1−1×p2−1p2\frac{p2−1}{p2}p2p2−1×…×pm−1pm\frac{pm−1}{pm}pmpm−1输入格式
RSA知识点及刷题记录
甜酒大马猴
密码学python笔记
Crypto密码学------RSARSA基础知识欧拉函数phi=(p-1)*(q-1)*(r-1)gmpy2.gcd(a,b)//欧几里得算法gmpy2.gcdext(a,b)//扩展欧几里得算法gmpy2.iroot(x,n)//x开n次根d=gmpy2.invert(e,pai)//求逆元,d*e=1(modpai)gmpy2.mpz(x)//初始化一个大整数xgmpy2.mpfr(x)//
算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理
lijiachang030718
算法算法学习
目录引言一、欧拉函数1.概念2.求每个数的欧拉函数二、线性筛法求欧拉函数三、欧拉定理,费马小定理引言本文主要介绍欧拉函数、线性筛法求欧拉函数,以及公式是怎样推导出来的,并且介绍了欧拉定理,以及费马小定理是怎样被推导出来的。一、欧拉函数1.概念欧拉函数ϕ(N):欧拉函数\phi(N):欧拉函数ϕ(N):1~N中与N互质的数的个数,(互质:公约数只有1的两个自然数)N=p1α1⋅p2α2⋅p3α3⋅⋯
【数学】简化剩余系、欧拉函数、欧拉定理与扩展欧拉定理
OIer-zyh
数学#数论OI数学数论
简化剩余系与完全剩余系略有区别。我们定义数组ai(1≤i≤n)a_i(1\lei\len)ai(1≤i≤n)为模mmm的简化剩余系,当且仅当∀1≤i,j≤n\forall1\lei,j\len∀1≤i,j≤n,有ai≢aj(modm)a_i\not\equiva_j\pmodmai≡aj(modm),∀1≤i≤n\forall1\lei\len∀1≤i≤n,有gcd(m,ai)=1\gcd(
C++ 数论相关题目(欧拉函数、筛法求欧拉函数)
伏城无嗔
数论力扣算法笔记c++算法开发语言
1、欧拉函数给定n个正整数ai,请你求出每个数的欧拉函数。欧拉函数的定义1∼N中与N互质的数的个数被称为欧拉函数,记为ϕ(N)。若在算数基本定理中,N=pa11pa22…pamm,则:ϕ(N)=N×p1−1p1×p2−1p2×…×pm−1pm输入格式第一行包含整数n。接下来n行,每行包含一个正整数ai。输出格式输出共n行,每行输出一个正整数ai的欧拉函数。数据范围1≤n≤100,1≤ai≤2×10
Acwing - 算法基础课 - 笔记(数学知识 · 二)
抠脚的大灰狼
算法Acwing算法基础课算法数论
文章目录数学知识(二)欧拉函数公式法筛法欧拉定理快速幂扩展欧几里得算法中国剩余定理数学知识(二)这一小节主要讲解的内容是:欧拉函数,快速幂,扩展欧几里得算法,中国剩余定理。这一节内容偏重于数学推导,做好心理准备。欧拉函数公式法什么是欧拉函数呢?欧拉函数用ϕ(n)\phi(n)ϕ(n)来表示,它的含义是,111到nnn中与nnn互质的数的个数比如,ϕ(6)=2\phi(6)=2ϕ(6)=2,解释:1
【算法基础 & 数学】欧拉函数
为梦而生~
基础算法算法数学欧拉函数蓝桥杯
题目描述给定nnn个正整数aia_iai,请你求出每个数的欧拉函数。输入格式第一行包含整数nnn。接下来nnn行,每行包含一个正整数aia_iai。输出格式输出共nnn行,每行输出一个正整数aia_iai的欧拉函数。数据范围1≤n≤1001≤n≤1001≤n≤100,1≤ai≤2×1091≤a_i≤2×10^91≤ai≤2×109样例输入样例:3368输出样例:224定义φ(n)\varphi(n
数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
数论知识学习总结(二)
Nie同学
acwing学习总结c++
文章目录一、欧拉函数1.欧拉函数2.筛法求欧拉函数(采用筛质数的线性筛法)二、快速幂1.快速幂2.快速幂求逆元三、扩展欧几里得算法1.扩展欧几里得算法2.线性同余方程四、中国剩余定理1.表达整数的奇怪方式一、欧拉函数在数论,对正整数nnn,欧拉函数是小于等于nnn的正整数中与nnn互质的数的数目.1.欧拉函数1∼N1\simN1∼N中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)\phi(N)
【数论】一些数论知识
ssllth
数论&数学数论同余约数欧拉定理费马小定理
文章目录前言内容素数关于素数无限个的证明n以内的素数个数算术基本定理约数一个数的正约数个数(约数个数定理)一个数的正约数和(约数和定理)最大公约数和最小公倍数gcd(a,b)*lcm(a,b)=a*b的证明更相减损术欧几里得算法欧拉函数积性函数一些性质同余一些性质欧拉定理费马小定理贝祖定理(裴蜀定理)代码求通解ax+by=nax+by=nax+by=n方程的主要解题步骤线性同余方程乘法逆元线性求逆
大数据安全 | 期末复习(上)| 补档
啦啦右一
#大数据安全大数据与数据分析单例模式
文章目录概述⭐️大数据的定义、来源、特点大数据安全的含义大数据安全威胁保障大数据安全采集、存储、挖掘环节的安全技术大数据用于安全隐私的定义、属性、分类、保护、面临威胁安全基本概念安全需求及对应的安全事件古典密码学里程碑事件扩散和混淆的概念攻击的分类模运算移位加密仿射加密维吉尼亚密码DES混淆与扩散Feistel加密DES密钥生成DES流程数论欧几里得算法拓展欧几里得算法欧拉函数有限域运算AES密钥
算法归纳总结(第五天)(数论、数学知识(第一部分)总结)
乘风破浪的咸鱼君
算法c++
目录一、筛质数(与试除法)1、普通筛法2、埃筛法3、线性筛法4、试除法①、试除法代码二、约数1、试除法求约数2、最大公约数①、辗转相除法(欧几里得算法)3、约数个数4、约数之和三、欧拉函数1、普通筛求欧拉函数①、欧拉函数定义②、应用公式。③、代码实现2、线性筛求欧拉函数①、线性筛法②、求欧拉函数四、快速幂与求逆元1、快速幂2、快速幂求逆元五、扩展欧几里得算法与线性同余方程1、扩展欧几里得算法①、裴
欧拉函数和欧拉定理
云儿乱飘
数学知识数论
873.欧拉函数-AcWing题库#includeusingnamespacestd;intmain(){intn;cin>>n;while(n--){inta;cin>>a;intret=a;for(inti=2;i1)ret-=ret/a;cout#includeusingnamespacestd;constintN=1e6+10;intp[N]={0};vectorv,st(N);intma
数学之美 第十七章 RSA加密算法
A黄橙橙
预备知识:欧拉函数在数论,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(其中φ(1)=1)通式为:其中p1,p2...pn为x所有质因数,x是不为0的整数。特殊:若n为质数p的k次幂,因为除了p的倍数外,其他数都与n互质。欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)当n为奇数时,φ(2n)=φ(n)当n为质数时,φ(n)=n-1P.S.积性函数:对于任意互质的
AcWing--互质数的个数-->数论(欧拉函数)
芝士小熊饼干
ACWing算法python欧拉函数
AcWing4968.互质数的个数-AcWing(python)#输入a,b=map(int,input().split())mod=998244353#快速幂取模模板:defqmi(a,b):res=1while(b):if(b&1):res=res*a%moda=a*a%modb>>=1returnres#欧拉函数#质因数#判断特例if(a==1):print(0)else:res=ax=a#
对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
[读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
[MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul