E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
SGD收敛性
机器学习实践入门(三):优化算法和参数调节
本文参考自深蓝学院课程,所记录笔记,仅供自学记录使用优化算法和参数调节网络优化基础回顾等高线损失函数VS代价函数VS目标函数梯度和步长优化方案
SGD
家族学习率α\alphaα传统
SGD
算法的缺点
SGD
算法的改进方案
橘の月半喵
·
2022-12-08 18:34
机器学习
机器学习
算法
深度学习
【机器学习实战】使用
SGD
-随机梯度下降、随机森林对MNIST数据进行二分类(Jupyterbook)
1.数据集由美国高中生和人口调查局员工手写的70000个数字的图片。数据集获取#获取MNIST数据集fromsklearn.datasetsimportfetch_openmlmnist=fetch_openml('mnist_784',version=1,cache=True,as_frame=False)mnist查看X和Y找索引为36000的实例,并将其还原成数字(书中是还原成了5,但是我这
想做一只快乐的修狗
·
2022-12-08 11:27
随机森林
分类
随机梯度下降
二分类
CS231n Lecture 8: Training Neural Networks Part2
Optimization动量版SGDSGD仍然还有一些问题:当损失函数在一个方向快速改变,另一个方向很慢地改变时,梯度下降会变成非常慢地一个过程同时,
SGD
对于驻点和局部最小值的表现并不好,在那些地方会堵住
QingYuAn_Wayne
·
2022-12-08 11:56
CS231n
学习笔记
CS231n lecture 3 损失函数和优化
MulticlassSVMloss多分类SVM损失函数正则项RegularizationSoftmaxClassifier优化Optimization随机梯度下降法StochasticGradientDescent(
SGD
QingYuAn_Wayne
·
2022-12-08 11:26
CS231n
学习笔记
【机器学习实战】使用
SGD
、随机森林对MNIST数据集实现多分类(jupyterbook)
1.获取数据集并重新划分数据集#获取MNIST数据集fromsklearn.datasetsimportfetch_openmlmnist=fetch_openml('mnist_784',version=1,cache=True,as_frame=False)#查看测试器和标签X,y=mnist['data'],mnist['target']X_train,X_test,y_train,y_te
想做一只快乐的修狗
·
2022-12-08 11:50
随机森林
分类
SGD
python
adam算法效果差原因_深度学习优化器-Adam两宗罪
从理论上看,一代更比一代完善,Adam/Nadam已经登峰造极了,为什么大家还是不忘初心
SGD
呢?举个栗子。很多年以前,摄影离普罗大众非常遥远。十年前,傻瓜相机开始风靡,游客几乎人手一个。
weixin_39536728
·
2022-12-08 10:20
adam算法效果差原因
NNDL 作业11:优化算法比较
目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹4.分析上图,说明原理(1)为什么
SGD
会走“之字形”?其它算法为什么会比较平滑?
Persevere~~~
·
2022-12-08 10:11
算法
python
开发语言
优化函数
SGD
/AdaGrad/AdaDelta/Adam/Nadam
一、准备知识指数加权平均指数加权平均值又称指数加权移动平均值,局部平均值,移动平均值。加权平均这个概念都很熟悉,即根据各个元素所占权重计算平均值。指数加权平均中的指数表示各个元素所占权重呈指数分布。mini-batch梯度下降法在实际应用中,由于样本数量庞大,训练数据上百万是很常见的事。如果每执行一次梯度下降就遍历整个训练样本将会耗费大量的计算机资源。在所有样本中随机抽取一部分(mini-batc
小媛在努力
·
2022-12-08 09:40
算法基础
优化器:
SGD
> Momentum > AdaGrad > RMSProp > Adam
目录
SGD
随机梯度下降momentumAdaGradRMSPropSGD随机梯度下降在这里
SGD
和min-batch是同一个意思,抽取m个小批量(独立同分布)样本,通过计算他们平梯度均值。
superjfhc
·
2022-12-08 08:05
深度学习
机器学习
机器学习
深度学习
优化方法:
SGD
,Momentum,AdaGrad,RMSProp,Adam
参考:https://blog.csdn.net/u010089444/article/details/767258431.SGDBatchGradientDescent在每一轮的训练过程中,BatchGradientDescent算法用整个训练集的数据计算costfuction的梯度,并用该梯度对模型参数进行更新:优点:costfuction若为凸函数,能够保证收敛到全局最优值;若为非凸函数,能
weixin_34133829
·
2022-12-08 08:04
Loss优化方法:
SGD
,Momentum,AdaGrad,RMSProp,Adam
1.SGDBatchGradientDescent在每一轮的训练过程中,BatchGradientDescent算法用整个训练集的数据计算costfuction的梯度,并用该梯度对模型参数进行更新:Θ=Θ−α⋅▽ΘJ(Θ)Θ=Θ−α⋅▽ΘJ(Θ)优点:costfuction若为凸函数,能够保证收敛到全局最优值;若为非凸函数,能够收敛到局部最优值缺点:由于每轮迭代都需要在整个数据集上计算一次,所以批
daisyyyyyyyy
·
2022-12-08 08:32
机器学习
深度学习optimizer:
SGD
,Momentum,AdaGrad,RMSProp,Adam源代码自编写及pytorch.optimizer介绍
随着深度学习的兴起,其算法的核心:梯度下降算法正不断发展,本文将简要介绍几种主流的optimizer:
SGD
(StochasticGradientDescent),Momentum,AdaGrad(AdaptiveGradientAlgorithm
Rekoj_G
·
2022-12-08 08:51
深度学习
机器学习
神经网络
python
pytorch
SGD
、Momentum、 AdaGrad、Adam
目录1.
SGD
1.1
SGD
的缺点2.Momentum3.AdaGrad4.Adam5使用哪种更新方法呢神经网络的学习的目的是找到使损失函数的值尽可能小的参数。
莱维贝贝、
·
2022-12-08 08:47
机器学习与深度学习算法
神经网络
python
机器学习
sgd
adam算法
直观理解常用的优化器:
SGD
,AdaGrad, Adam
随机梯度下降是深度学习常用的优化算法,但是在模型优化的过程中,随机梯度下降也可能会失效,,本文主要讨论随机梯度下降及其改进算法。一、随机梯度下降1.1基本概念参考:辨析梯度下降1.2随机梯度下降算法失效的原因首先,深度学习的优化本身就是一个难解的问题,因为可能会存在很多的局部最优点,此外,还有山谷和鞍点两种特殊情况。山谷:狭长的山间小道,左右两边都是峭壁;鞍点:一个方向上两头翘,一个方向上两头垂,
草莓酱土司
·
2022-12-08 08:14
深度学习基础知识
算法
人工智能
NNDL 作业11:优化算法比较
目录编程实现图6-1,并观察特征观察梯度方向编写代码实现算法,并可视化轨迹分析上图,说明原理(选做)总结
SGD
、Momentum、AdaGrad、Adam的优缺点(选做)增加RMSprop、Nesterov
沐一mu
·
2022-12-08 06:00
算法
python
numpy
d2l学习笔记
SGD
的从0开始和调库实现
线性回归问题定义数据集从0开始的实现生成人工数据集随机访问样本线性回归模型损失函数优化函数训练函数调库实现\quad这是我在学习d2l以及使用Pytorch进行机器学习课程学习的过程中整理的笔记以及一些思考,希望能对同样开始学习机器学习的你有所帮助,如有问题还请交流更正。环境是PyCharm2022.2.1Python3.8(conda)pipinstalld2l,torch,torchvisio
BreadSuperman
·
2022-12-07 22:25
机器学习
学习
python
机器学习
【NNDL 作业】优化算法比较 增加 RMSprop、Nesterov
optimizers["
SGD
"]=
SGD
(lr=0.9)optimizers["Momentum"]=Momentum(lr=0.3)optimizers["Nesterov"]=Nesterov(lr
HBU_David
·
2022-12-07 20:45
算法
python
人工智能
计量实证Stata代码合集(覆盖论文全流程)
时间跨度:无3、区域范围:无4、指标说明:包含如下模型代码:数据处理描述性统计相关性分析实证模型分析内生性解决办法机制分析部分数据如下:相关研究:[1]魏梅,曹明福,江金荣.生产中碳排放效率长期决定及其
收敛性
分析
Go炜
·
2022-12-07 17:45
其他
NNDL 作业11:优化算法比较
目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹4.分析上图,说明原理(选做)5.总结
SGD
、Momentum、AdaGrad、Adam的优缺点6.Adam这么好,
cdd04
·
2022-12-07 17:09
算法
python
开发语言
epoch、iteration和batchsize的区别
在深度学习中,一般采用
SGD
训练,即每次训练在训练集中取batchsize个样本训练;(2)iteration:1个iteration等于使用batchsize个样本训练一次;(3)epoch:1个epoch
zdaiot
·
2022-12-07 16:14
MachineLearning
机器学习
batch、epoch、iteration的区别
在深度学习中,一般采用
SGD
训练,即每次训练在训练集中取batchsize个样本训练;(2)iteration:1个iteration等于使用batchsize个样本训练一次;Iteration是batch
duanyuchen
·
2022-12-07 15:34
Deep
Learning
深度学习
关于 epoch、 iteration和batchsize的区别
在深度学习中,一般采用
SGD
训练,即每次训练在训练集中取batchsize个样本训练;(2)iteration:1个iteration等于使
吴春旭呀
·
2022-12-07 15:33
深度学习
epoch
iteration
batchsize
参数epoch、 iteration和batchsize的区别
在深度学习中,一般采用
SGD
训练,即每次训练在训练集中取batchsize个样本训练;(2)i
立志成为超分菜鸟
·
2022-12-07 15:30
深度学习优化算法,Adam优缺点分析
深度学习优化算法经历了
SGD
->SGDM->NAG->AdaGrad->AdaDelta->Adam->Nadam这样的发展历程。
星如雨グッ!(๑•̀ㅂ•́)و✧
·
2022-12-07 15:30
深度学习
深度学习
算法实习准备之三:(优化方法)梯度下降/正则化(过拟合)/激活函数
算法实习准备之三机器学习算法复习(一)深度学习的优化深度学习优化的困难和挑战梯度爆炸梯度消失梯度下降的基本方法批梯度下降BGD随机梯度下降
SGD
动量法Momentum自适应学习率算法AdagradAdam
雾容
·
2022-12-07 12:14
算法实习准备
算法
机器学习
神经网络
深度学习
NNDL 作业11:优化算法比较
目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹5.总结
SGD
、Momentum、AdaGrad、Adam的优缺点参考1.编程实现图6-1,并观察特征代码实现importnumpyasnpfrommatplotlibimportpyplotaspltfrommpl_toolkits.mplot3dimportAxes3Ddeffunc
冰冻胖头鱼
·
2022-12-07 11:22
算法
python
开发语言
【Tensorflow深度学习】优化算法、损失计算、模型评估、向量嵌入、神经网络等模块的讲解(超详细必看)
(2)
SGD
算法:动量梯度下降算法。(3)Adagrad算法:学习率与参数更新频率相关。(4)Adamax算法:Adam算法的扩展型,词嵌入运算有时优于Adam算法。(5)Ftrl算法:谷
showswoller
·
2022-12-07 07:12
深度学习
算法
深度学习
神经网络
tensorflow
python
123节点算例
该电路“
收敛性
能良好。想了解详情请下载附件http://www.apollocode.net/a/938.html
看个人资料
·
2022-12-06 17:23
人工智能
电力行业
NNDL 作业11:优化算法比较
目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹5.总结
SGD
、Momentum、AdaGrad、Adam的优缺点6.Adam这么好,
SGD
是不是就用不到了?
蒂洛洛
·
2022-12-06 15:25
算法
python
开发语言
深度学习优化方法总结比较(
SGD
,Adagrad,Adadelta,Adam,Adamax,Nadam)
SGD
此处的
SGD
指mini-batchgradientdescent,关于batchgradientdesc
Tom Hardy
·
2022-12-06 13:08
算法
人工智能
深度学习
java
计算机视觉
NNDL 作业11:优化算法比较
文章目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹4.分析上图,说明原理(选做)5.总结
SGD
、Momentum、AdaGrad、Adam的优缺点(选做)6.Adam
牛奶园雪梨
·
2022-12-06 13:37
算法
python
NNDL 作业11:优化算法比较
文章目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹4.分析上图,说明原理(选做)1.为什么
SGD
会走“之字形”?其它算法为什么会比较平滑?
萐茀37
·
2022-12-06 11:28
算法
python
NNDL 作业11:优化算法比较
文章目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹4.分析上图,说明原理(选做)5.总结
SGD
、Momentum、AdaGrad、Adam的优缺点(选做)总结1.
plum-blossom
·
2022-12-06 06:53
NNDL实验
算法
python
大白话论《马尔科夫链蒙特卡洛采样》MCMC原理
针对特殊的采样目标函数,不断采样、训练建议采样分布,始终具有很好采样效果自探索、自发现的动态调整采样点,利用前期采样点的信息,采样过程具备
收敛性
采样效率高,克服“接受-拒绝”采样方法对于特殊目标函数、采样点不易被接受
lamusique
·
2022-12-05 23:44
数学论
算法
深度学习卷积神经网络入门基础篇(神经网络与反向传播)
卷积神经网络学习笔记一神经网络模型1.1M-P神经网络模型M-P神经网络-激活函数1.2感知机1.3前馈神经网络1.4误差反向传播1.4.1神经网络前向传播1.4.2误差反向传播1.4.3梯度下降优化器1.4.3.1BGD,
SGD
懒续缘
·
2022-12-05 17:57
神经网络
算法
NNDL 作业11:优化算法比较
文章目录前言一、1.编程实现图6-1,并观察特征二、观察梯度方向三、3.编写代码实现算法,并可视化轨迹四、4.分析上图,说明原理(选做)1、为什么
SGD
会走“之字形”?其它算法为什么会比较平滑?
别被打脸
·
2022-12-05 15:45
人工智能
深度学习
神经网络
rnn
算法
动手学深度学习第二版——Day1(章节1——2.2)
GRU,LSTM,seq2seq注意力机制——Attention,Transformer优化算法——
SGD
,Momentum,Adam高性能计算——并行,多GPU,分布式计算
Mrwei_418
·
2022-12-05 13:25
pytorch
Deel
Learning
深度学习
人工智能
pytorch
神经网络与深度学习 作业11:优化算法比较
目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹4.分析上图,说明原理(1)为什么
SGD
会走“之字形”?其它算法为什么会比较平滑?
Jacobson Cui
·
2022-12-05 13:53
《神经网络与深度学习》课后习题
人工智能
Adam那么棒,为什么还对
SGD
念念不忘 (2)
上篇文章中(Adam那么棒,为什么还对
SGD
念念不忘(1)——一个框架看懂优化算法),我们用一个框架来回顾了主流的深度学习优化算法。
kasdlj
·
2022-12-05 13:17
机器学习
Adam那么棒,为什么还对
SGD
念念不忘 (2)—— Adam的两宗罪
从理论上看,一代更比一代完善,Adam/Nadam已经登峰造极了,为什么大家还是不忘初心
SGD
呢?举个栗子。很多年以前,摄影离普罗大众非常遥远。十年前,傻瓜相机开始风靡,游客几乎人手一个。
gukedream
·
2022-12-05 13:16
深度学习
最优化策略
NNDL 作业11:优化算法比较
文章目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹4.分析上图,说明原理(选做)1.为什么
SGD
会走“之字形”?其它算法为什么会比较平滑?
辰 希
·
2022-12-05 13:14
算法
python
HBU-NNDL 作业11:优化算法比较
目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹4.分析上图,说明原理1、为什么
SGD
会走“之字形”?其它算法为什么会比较平滑?
不是蒋承翰
·
2022-12-05 13:13
算法
python
人工智能
深度学习
模式识别—判别函数分类法(几何分类法)
目录统计模式识别之判别分析判别函数定义解释样例判断函数正负值的确定确定判别函数的两个因素线性判别函数一般形式性质两类情况多类情况小结广义线性判别函数目的线性判别函数的几何性质模式空间与超平面概念讨论小结权空间与权向量解概念线性分类解空间线性二分空间Fisher线性判别感知器算法概念理解感知器算法感知器算法的
收敛性
梯度法梯度概念梯度算法思路实现方法固定增量法定义最小平方误差算法
想想虔诚怎么做
·
2022-12-05 12:55
模式识别
判别函数分类
梯度下降:BGD、
SGD
、mini-batch GD介绍及其优缺点
其共有三种:BGD,batchgradientdescent:批量梯度下降
SGD
,stochasticgradientdescent:随机梯度下降mini-batchGD,mini-batchgradientde
Activewaste
·
2022-12-05 12:09
深度学习
深度学习
SGD
有多种改进的形式,为什么大多数论文中仍然用
SGD
?
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达导读随机最速下降法(
SGD
)除了算得快,还具有许多优良性质。
小白学视觉
·
2022-12-05 12:09
人工智能
java
机器学习
深度学习
python
NNDL 作业11:优化算法比较
NNDL作业11:优化算法比较目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹4.分析上图,说明原理(选做)5.总结
SGD
、Momentum、AdaGrad、Adam
小鬼缠身、
·
2022-12-05 11:28
算法
python
CS231n作业笔记2.3:优化算法Momentum, RMSProp, Adam
关于各种优化算法的详细介绍,请参考CS231n课程笔记6.1:优化迭代算法之
SGD
,Momentum,NetsterovMomentum,AdaG
silent56_th
·
2022-12-05 11:48
cs231n
Momentum
Adam
RMSProp
优化算法
CS231n课程笔记
cs231n
momentum
RMSProp
Adam
作业11:优化算法比较
目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹4.分析上图,说明原理(选做)1)为什么
SGD
会走“之字形”?其它算法为什么会比较平滑?
岳轩子
·
2022-12-05 11:15
深度学习习题
算法
python
NNDL 作业11:优化算法比较
目录1.编程实现图6-1,并观察特征2.观察梯度方向3.编写代码实现算法,并可视化轨迹5.总结
SGD
、Momentum、AdaGrad、Adam的优缺点6.Adam这么好,
SGD
是不是就用不到了?
五元钱
·
2022-12-05 09:43
深度学习作业
深度学习
人工智能
线性回归LinearRegression的代码
函数是怎么进行梯度累加的#随机梯度下降函数defsgd(params,lr,batch_size):forparaminparams:param.data-=lr*param.grad/batch_size图片其中β与上面
sgd
阿维的博客日记
·
2022-12-05 09:50
机器学习
线性回归
python
numpy
上一页
14
15
16
17
18
19
20
21
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他