- 【密码学RSA】共模攻击原理详解_已知e1*e2的共模攻击题
malloc_冲!
rsa密码学
本题需要了解共模攻击推导过程及原理:1.共模攻击原理共模攻击即用两个及以上的公钥(n,e)来加密同一条信息m已知有密文:c1=pow(m,e1,n)c2=pow(m,e2,n)条件:当e1,e2互质,则有gcd(e1,e2)=1根据扩展欧几里德算法,对于不完全为0的整数a,b,gcd(a,b)表示a,b的最大公约数。那么一定存在整数x,y使得gcd(a,b)=ax+by所以得到:e1*s1+e2*
- 数论知识点总结(一)
Mark 85
数学数论算法数据结构
文章目录目录文章目录前言一、数论有哪些二、题法混讲1.素数判断,质数,筛法2.最大公约数和最小公倍数3.快速幂4.约数前言现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣!一、数论有哪些数论原根,素数判断,质数,筛法最大公约数,gcd扩展欧几里德算法,快速幂,exgcd,不定方程,进制,中国剩余定理,CRT,莫比乌斯反演,逆元,Lucas定理,类欧几里得算法,调和级数
- 算法基础-数学知识-欧拉函数、快速幂、扩展欧几里德、中国剩余定理
chirou_
算法c++蓝桥杯欧几里德欧拉函数
算法基础-数学知识-欧拉函数、快速幂、扩展欧几里德、中国剩余定理欧拉函数AcWing874.筛法求欧拉函数快速幂AcWing875.快速幂AcWing876.快速幂求逆元扩展欧几里德(裴蜀定理)AcWing877.扩展欧几里得算法AcWing878.线性同余方程中国剩余定理欧拉函数互质就是两个数的最大公因数只有1,体现到代码里面就是a和b互质,则bmoda=1moda(目前我不是很理解,但是可以这
- 扩展欧几里德求解ax + by = c 的 最小正整数解 ( x, y)
枸杞柠檬茶
ACM扩展欧几里得
大概思路:第一步:给出方程ax+by=c。第二步:算出辗转相除法gcd(a,b)。第三步:运用扩展欧几里德ex_gcd(a,b)-》ax+by=gcd(a,b)的一组解(x,y)。第三步:根据c%gcd(a,b)判断是否ax+by=c有解。第四步:根据ax+by=c的通解公式x1=(x+k*(b/gcd(a,b)))*(c/gcd(a,b)令b1=b/gcd(a,b),所以x1的最小正整数解为:x
- 扩展欧几里德算法详解以及乘法逆元
Stray_Lambs
数学acm扩展算法
转载网址:http://blog.csdn.net/zhjchengfeng5/article/details/7786595有些地方看不懂,但觉得写的很棒,先转载下来,以后慢慢研究……扩展欧几里德算法:谁是欧几里德?自己百度去先介绍什么叫做欧几里德算法有两个数ab,现在,我们要求ab的最大公约数,怎么求?枚举他们的因子?不现实,当ab很大的时候,枚举显得那么的naïve,那怎么做?欧几里德有个十
- Python算法设计 - 拓展欧几里得算法
小鸿的摸鱼日常
python算法设计算法python
目录一、拓展欧几里得算法二、Python算法实现三、作者Info一、拓展欧几里得算法扩展欧几里德算法是数论中最经典的算法之一,其目的用来解决不定方程。用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=GCD(a,b)什么是不定方程?不定方程(丢番图方程)是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等)的方程或方程组。二、Python算法实现defg
- 最大公约数
敲可爱的小超银
.欧几里德算法和扩展欧几里德算法欧几里德算法欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:定理:gcd(a,b)=gcd(b,amodb)证明:a可以表示成a=kb+r,则r=amodb假设d是a,b的一个公约数,则有d|a,d|b,而r=a-kb,因此d|r因此d是(b,amodb)的公约数假设d是(b,amodb)的公约数,则d|b,d|r,但是a
- 扩展欧几里德
JesHrz
扩展欧几里得求解不定方程ax+by=gcd(a,b)的整数解对于方程ax+by=c,如果gcd(a,b)|c,则有解,解为ax+by=gcd(a,b)的解乘以c/gcd(a,b);否则无解longlongexgcd(longlonga,longlongb,longlong&x,longlong&y){if(!b){x=1;y=0;returna;}longlongt=exgcd(b,a%b,y,x
- 数论
weixin_30381317
c/c++数据结构与算法
目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b.筛选法
- 除等数论
じ☆夏妮国婷☆じ
算法除等数论
除等数论目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b
- 第二十九章 数论——中国剩余定理与线性同余方程组
Turing_Sheep
算法合集算法
第二十九章数论——中国剩余定理与线性同余方程组一、中国剩余定理1、作用:2、内容:3、证明:(1)逆元的存在性(2)验证定理的正确性4、代码实现:(1)步骤:(2)问题:(3)代码:一、中国剩余定理1、作用:我们上一章节中,详细地讲解了如何利用扩展欧几里德算法解一个线性同余方程,但是如果我们遇到了线性同余方程组的话,我们就需要用到今天所讲解的中国剩余定理。但是中国剩余定理的成立前提是,方程组中的模
- 第二十八章 数论——扩展欧几里德算法与线性同余方程
Turing_Sheep
算法合集算法
第二十八章扩展欧几里德算法一、裴蜀定理1、定理内容2、定理证明二、扩展欧几里德定理1、作用2、思路3、代码三、线性同余方程1、问题2、思路3、代码一、裴蜀定理1、定理内容对于任意整数aaa和bbb,一定存在整数xxx,yyy使得ax+byax+byax+by是gcd(a,b)gcd(a,b)gcd(a,b)的倍数。如果反过来说的话,如果m=ax+bym=ax+bym=ax+by,那么mmm一定是g
- 第二十七章 数论——快速幂与逆元
Turing_Sheep
算法合集算法
第二十七章快速幂与扩展欧几里德算法一、快速幂1、使用场景2、算法思路(1)二进制优化思想(2)模运算法则3、代码实现(1)问题(2)代码二、快速幂求逆元1、什么是逆元?(1)同余(2)逆元2、逆元的求法(1)欧拉定理(2)费马小定理(3)问题(4)求解逆元一、快速幂1、使用场景我们知道,如果我们想计算一个qkq^kqk,我们可以不断地去乘,但这样的时间复杂度是O(k)O(k)O(k),这个是复杂度
- 数论入门基础(同余定理/费马小定理/扩展欧几里德算法/中国剩余定理)
Allen_0526
数论同余定理费马小定理Exgcd中国剩余定理
本文整理了同余定理/费马小定理/扩展欧几里德算法/中国剩余定理基本的念描述、结论证明和模板应用同余定理1.描述:同余定理是数论中的重要概念。给定一个正整数m,如果两个整数a和b满足(a-b)能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(modm)。2.符号:两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对模m同余或a同余于b模m。记作a≡b(mo
- 夜深人静写算法(三)- 初等数论入门
英雄哪里出来
夜深人静写算法算法线性同余初等数论ACM数学
文章目录一、前言二、数论基本概念1、整除性2、素数1)素数与合数2)素数判定3)素数定理4)素数筛选法3、因数分解1)算术基本定理2)素数拆分3)因子个数4)因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余1)模运算2)快速幂取模3)循环节二、数论基础知识1、欧几里德定理(辗转相除)2、扩展欧几里德定理1)线性同余2)同余方程求解3)逆元3、中国剩余定理4、欧拉函数1)互素2)筛选法求
- 51nod 算法马拉松 集合计数
Dorkdomain
列出等式之后发现是二元一次不定式求正整数解然而并不会求解枚举肯定超时经过一番搜索发现是扩展欧几里德然后现学现卖了一下然而边界问题涉及到四个实数化整并求交集需要考虑的太多一时考虑不清楚决定暴力枚举然后只过了一半数据只好又回头处理边界问题静下心来仔细一思考边界问题也并不是那么难处理集合计数SystemMessage(命题人)基准时间限制:1秒空间限制:131072KB分值:20给出N个固定集合{1,N
- 最大公约数(Gcd)两种算法(Euclid && Stein) [整理]
weixin_33832340
很老的东东了,其实也没啥好整理的,网上很多资料了,就当备用把:-)1.欧几里德算法和扩展欧几里德算法欧几里德算法欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:定理:gcd(a,b)=gcd(b,amodb)证明:a可以表示成a=kb+r,则r=amodb假设d是a,b的一个公约数,则有d|a,d|b,而r=a-kb,因此d|r因此d是(b,amodb)
- C语言如何求最大公约数?错觉?C语言两行代码描述辗转相除法
莫影老师
C语言小题目大智慧公约数C语言C语言编程C语言学习C语言试题
前言本文主要介绍的是C语言常规的一道题,希望对于广大读者学习C语言有一些帮助。使用C语言求解a和b的最大公约数。该问题可以采用辗转相除法去解决!辗转相除法欧几里德算法又称辗转相除法,欧几里德算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里德在其著作《TheElements》中最早描述了这种算法,所以被命名为欧几里德算法。扩展欧几里德算法可用于RSA加密等领域。假如需要求1997和615两
- 扩展欧几里德 中国剩余定理 合并模线性方程组
foreverlin1204
数学天地
1.1.1扩展欧几里得要说扩展必须先从它的非扩展版本说起,对于求两个数的最大公约数,我们有辗转相除法,其核心就是gcd(a,b)=gcd(b,a%b)(a>=b)(1)为什么呢,我们来证明一下令a=k*b+t则a%b=t,若设d是a,b的一个公约数,a%d==0k*b%d==0又因为(k*b+t)%d==0所以t%d==0,这个d包含了a和b的最大公约数,于(1)得证。有了这个作为基础我们来看下扩
- 欧几里德算法、扩展欧几里德算法、乘法逆元
zixiaqian
转http://hi.baidu.com/dongxiang2007/blog/item/db9b98626ce722d5e6113a51.html欧几里德算法、扩展欧几里德算法、乘法逆元2009年05月22日星期五下午12:15最近看了一本书《程序员》里面说的一个面试题:求两个数的最大公约数:SoEasy的题目看过C的人都知道怎么写这个程序1.传统方法:穷举#includeintmain(){i
- ZOJ - 3609 Modular Inverse (扩展欧几里德求乘法逆元)
进修中的涵涵涵
扩展欧几里得
ModularInverseTimeLimit:2SecondsMemoryLimit:65536KBThemodularmodularmultiplicativeinverseofanintegeramodulomisanintegerxsuchthata-1≡x(modm).Thisisequivalenttoax≡1(modm).InputTherearemultipletestcases.
- 扩展欧几里德算法
??yy
voidgcd(inta,intb,int&d,int&x,int&y){if(!b){d=a;x=1;y=0;}else{gcd(b,a%b,d,y,x);y-=x*(a/b);}}扩展欧几里德算法的应用主要有以下三方面:(1)求解不定方程;(2)求解模线性方程(线性同余方程);(3)求解模的逆元;(1)使用扩展欧几里德算法解决不定方程的办法:对于不定整数方程pa+qb=c,若cmodGcd(p
- 扩展欧几里德算法求不定方程
yuxiaoyu.
例题是POJ1061青蛙的约会题目大意是,一个周长为L的圆,A、B两只青蛙,分别位于x、y处,每次分别能跳跃m、n,问最少多少次能够相遇,如若不能输出“Impossible”此题其实就是扩展欧几里德算法-求解不定方程,线性同余方程。设过k1步后两青蛙相遇,则必满足以下等式:(x+m*k1)-(y+n*k1)=k2*L(k2=0,1,2....)//这里的k2:存在一个整数k2,使其满足上式稍微变一
- 模数非互质的同余方程组(非互质版中国剩余定理)
weixin_30596343
之前介绍到的中国剩余定理只能求解模数两两互质的同余方程组。那么,模数如果不一定两两互质的情况应该怎么求呢?下面介绍通过合并方程的方法来解决问题(要用到扩展欧几里德算法)。顾名思义,合并方程就是把所有的同余方程组合并成一个。举个例子,合并同余方程组x%A=a①x%B=b②现在给出两种合并的方法:1)要把①②式合并成x%C=c③易知C一定是A和B的最小公倍数的倍数,否则不可能同时满足①②两式。这里我们
- 关于exgcd算法(扩展欧几里德算法)的几点总结
Object_S
EXGCD算法的概念:一种用来求解形如的同余方程的算法EXGCD算法的时间复杂度:求解的时间复杂度大约为EXGCD算法的代码:#include#includeusingnamespacestd;inta,b,x,y;voidexgcd(inta,intb){if(b==0){x=1,y=0;return;}exgcd(b,a%b);inttemp=x;x=y,y=temp-a/b*y;return
- 数论快速入门(同余、扩展欧几里德、中国剩余定理、大素数测定和整数分解、素数三种筛法、欧拉函数以及各种模板)
Must_so
ACM题解与算法ACM(算法)
数学渣渣愉快的玩了一把数论,来总结一下几种常用的算法入门,不过鶸也是刚刚入门,所以也只是粗略的记录下原理,贴下模板,以及入门题目(感受下模板怎么用的)(PS:文中亮色字体都可以点进去查看百度原文)附赠数论入门训练专题:点我打开专题(题目顺序基本正常,用以配套数论入门)一、同余定理同余式:a≡b(modm)(即a%m==b%m)简单粗暴的说就是:若a-b==m那么a%m==b%m这个模运算性质一眼看
- 欧几里得算法及其扩展以及运用
风灵无畏YY
数论gcdNOIPgcd
以下内容部分来自度娘,另一部分来自百度百科。扩展欧几里德算法liaoy这是本校一位学长关于扩展欧几里得的讲解,讲得很好,欢迎大家阅读【介绍】扩展欧几里德算法是用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=gcd(a,b)=d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。【欧几里得算法】一、概述欧几里德算法又称辗转相除法,用于计算两个整数a,b的
- A/B(逆元)
你就是根号四
数论
逆元定义:对于正整数和,如果有,那么把这个同余方程中的最小正整数解叫做模的逆元。一般用欧几里得扩展来做:ax+by=1;称a和b互为逆元详细扩展欧几里德算法介绍,解决该题的关键是:1、了解扩展欧几里德算法,可以运用其解出gcd(a,b)=ax1+by1中的x1、y1的值2、由题可得以下内容:n=A%9973,则n=A-k*9973。设A/B=x,则A=Bx。所以Bx-k*9973=n。即Bx-99
- 扩展欧几里德算法详解
ltrbless
ACM数学
1、问题引入:有一个经典的问题:直线上的点,求直线ax+by+c=0上有多少个整数点(x,y)满足x->(x1,x2),y->(y1,y2);怎么来找整数解,这时就可以利用扩展欧几里德算法.2、扩展欧几里德算法:先附上代码:voidexgcd(inta,intb,int&d,int&x,int&y){if(!b)d=a,x=1,y=0;else{exgcd(b,a%b,d,x,y);y-=x*(a
- 数论基础(gcd + 拓展欧几里得)
Southan97
AlgorithmsNumberTheoryMathematics
求连个数的最大公约数gcd:typedeflonglongll;constintMAXN=10000+7;llgcd(lla,llb){returnb?gcd(b,a%b):a;}拓展欧几里得:欧几里得定理:gcd(a,b)=gcd(b,a%b);gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)扩展欧几里德算法是用来在已知a,b求解一组x,y使得ax+by=Gcd(
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象