- 【数论】一些数论知识
ssllth
数论&数学数论同余约数欧拉定理费马小定理
文章目录前言内容素数关于素数无限个的证明n以内的素数个数算术基本定理约数一个数的正约数个数(约数个数定理)一个数的正约数和(约数和定理)最大公约数和最小公倍数gcd(a,b)*lcm(a,b)=a*b的证明更相减损术欧几里得算法欧拉函数积性函数一些性质同余一些性质欧拉定理费马小定理贝祖定理(裴蜀定理)代码求通解ax+by=nax+by=nax+by=n方程的主要解题步骤线性同余方程乘法逆元线性求逆
- 数学之美 第十七章 RSA加密算法
A黄橙橙
预备知识:欧拉函数在数论,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(其中φ(1)=1)通式为:其中p1,p2...pn为x所有质因数,x是不为0的整数。特殊:若n为质数p的k次幂,因为除了p的倍数外,其他数都与n互质。欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)当n为奇数时,φ(2n)=φ(n)当n为质数时,φ(n)=n-1P.S.积性函数:对于任意互质的
- Min_25筛学习小计
YiPeng_Deng
学习小计计数Min_25筛法积性函数
好菜啊,现在才会Min_25简单介绍由Min_25在他的博客中介绍的做法,又称Min_25筛。用于求积性函数f(n)f(n)f(n)的前缀和,其中要求f(p)f(p)f(p)可以表示成多项式,并且f(pk)f(p^k)f(pk)可以快速算出。能够在O(n0.75log)O(\frac{n^{0.75}}{log})O(logn0.75)的时间内算出。基本思路使用DPDPDP先求出所有素数的f(p)
- 一些些筛子(埃氏筛、线性筛、杜教筛)
溶解不讲嘿
数论算法c++推荐算法学习笔记
有时我们需要求出一个范围内的质数,或者要计算一些积性函数的值,但往往题目无法承受直接判断质数、直接求函数值的时间复杂度,这时我们就可以用筛子了入门级:埃氏筛假设当前有一块板,板上写着2∼n2\simn2∼n的数,如果我们想快速找出质数,那么我们可以考虑标记那些合数,让划了斜线的数表示合数,于是我们从左往右依次看,当遇到一个质数时,就把后面他的所有的倍数都划上斜线,而这就是埃氏筛的原理for(int
- Atcoder ABC179
rag_doll
Atcoderpython
这期的题都可以用py写C-AxB+C因为N非常大,暴力是不可取的遍历C,将N-C分解求每个数的因子个数可以用欧拉筛的方法,我这里采用了积性函数的性质#-*-coding:utf-8-*-#@time:2023/6/213:30#@file:atcoder.py#@software:PyCharmimportbisectimportcopyimportsysfromitertoolsimportpe
- 数论专题(寒假Day 5)
叔丁基锂_
Day5数论一些定义和性质,只有种取值数论函数:定义域为正整数,陪域为复数的函数。我们主要研究定义域为正整数,值域为整数的函数。积性函数:满足若a,b互质,则的数论函数称为积性函数。完全积性函数:满足的数论函数称为完全积性函数狄利克雷卷积:对于数论函数,定义其狄利克雷卷积两个积性函数的狄利克雷卷积仍为积性函数一些常见的积性函数单位函数常函数幂函数欧拉函数代表[1,x]中与x互质的个数=莫比乌斯函数
- 莫比乌斯函数
林苏泽
数论
目录前导积性函数莫比乌斯函数莫比乌斯反演莫比乌斯反演定理莫比乌斯反演定理证明莫比乌斯反演另一性质(与欧拉函数有关)前导要学习莫比乌斯函数需要学习到积性函数,深度理解欧拉筛。先说说什么是积性函数吧。积性函数其实积性函数非常好理解,定义积性函数:若gcd(a,b)=1,且满足f(ab)=f(a)f(b),则称f(x)为积性函数完全积性函数:对于任意正整数a,b,都满足f(ab)=f(a)f(b),则称
- 线性筛(欧拉函数)(莫比乌斯函数)
SadSummerHoliday
2018年九月大二上数论
原文:https://www.cnblogs.com/Paul-Guderian/p/7723031.html在这里提供三种线性筛的讲解,它们分别是:素数筛,欧拉筛和莫比乌斯筛。筛法正确性的重要理论依据:上述函数均为积性函数。积性函数的性质为:若f(x)是一个积性函数,那么对于任意素数a,b,满足f(ab)=f(a)*f(b)·一些可爱的要点(有助于理解筛法原理):①欧拉筛和莫比乌斯筛是以素数筛为
- 积性函数及其初级应用
SMT0x400
学习算法数学
积性函数及其初级应用垃圾博客,我本地LaTeX挂了,艹大量内容和入门方式都参考了莫比乌斯反演与数论函数。感谢CMD大爷!0xFF前置知识1.质数及其判定,质因数及其分解小学课本里面讲过质数的定义了,不细讲。分解质因数也是基本功。2.筛法同学们想必都会埃氏筛法吧,即对于每一个质数枚举其倍数筛除整个值域内的所有数。如果你学得更远一点,那么你会使用欧拉筛法。它的算法思想这里不再赘述。后面的一切练习题都是
- 杜教筛和狄利克雷卷积
yyf525
数论c++
零、前置知识1.积性函数积性函数的定义:若(a,b)=1(a,b)=1(a,b)=1,则f(a⋅b)=f(a)⋅f(b)f(a\cdotb)=f(a)\cdotf(b)f(a⋅b)=f(a)⋅f(b)。常见的积性函数有:φ\varphiφ函数,μ\muμ函数等。积性函数有以下性质:若f(x),g(x)f(x),g(x)f(x),g(x)均为积性函数,则h(x)=f(x)⋅g(x)h(x)=f(x)
- HDU 6715算术 莫比乌斯反演
9fe5164d41b8
@[toc]题意,求。链接:hdu6715思路方法一:打表得出:进一步按套路优化,提出,令得:首先这个东西是,是一个积性函数,所以可以筛出来。这个东西可以按分别预处理出来,预处理的复杂度和埃式筛一样是,空间复杂度也是。最后上面这个式子就可以求和了。HDU数据证明,不预处理第二点更快。。。方法二:已知又因为:因此:因为当不为时:而当为时,自然也是,所以也不会影响下面这个式子:接下来的步骤和方法一就相
- 杜教筛的小结
罚时大师月色
c++
总所周知,杜教筛是一个可以快速求积性函数前缀和的工具,为了快速理解杜教筛,自己给自己写了一个文章快速理解。它可以在O(n2/3)的复杂度快速求出某个积性函数的前缀和。例如,我们想要知道fff函数的前缀和,我们可以去找一个ggg函数,可以O(1)求出前缀和的两个函数ggg函数,f∗gf*gf∗g函数。f∗gf*gf∗g函数中间的乘号代表迪利克雷卷积。常见的迪利克雷卷积有μ∗I=ϵμ*I=ϵμ∗I=ϵ
- Min-25 筛学习笔记
DaiRuiChen007
#Min-25筛学习笔记$\text{ByDaiRuiChen007}$##一、简要介绍Min-25筛,是一种能在**亚线性**时间内求出特定的一类积性函数$f(i)$的前缀和的算法。具体来说,Min-25筛可以在$\mathcalO(\sqrtn)$的空间复杂度与
- 积性函数系列(一):欧拉函数
8rfuz
算法算法数论
http://zhengyidong.me/2014/11/积性函数系列(一):欧拉函数/积性函数系列(一):欧拉函数NOVEMBER14,2014AT1:23AM本系列是数论篇章的第一篇(于是又挖了一个数论的坑orz),主要介绍、证明初等数论中一些重要的概念、结论。在微积分学领域,积性函数指的是具有f(ab)=f(a)f(b)的函数,在数论领域这个概念略有不同,仅定义在正整数上,它揭示了整数的很
- 【笔记】莫比乌斯反演(前置知识)
inferior_hjx
笔记c++算法
文章目录前言前置知识模定义性质整除定义性质同余定义性质逆元定义性质积性函数定义常见的积性函数证明欧拉函数为积性函数例1:欧拉函数线性筛例2:莫比乌斯函数线性筛前言由于文章正文太长,不得不分几篇博客。本篇为数论基础内容,学习过数论的可以跳过。最近学了莫比乌斯反演和一点狄利克雷卷积,感觉很难,也是看了很多博客才有点明,写一篇博客帮助自己理解。由于数论大多基于正整数讨论,故除特殊说明外,本文所有变量都为
- 省选数论总结
Cafard_
数论数学算法
目录前言常见符号及其意义数论函数积性函数1.定义2.常见的积性函数3.利用线性筛预处理普通的积性函数欧拉函数莫比乌斯函数1.定义2.性质3.莫比乌斯函数的代码实现4.莫比乌斯函数与欧拉函数莫比乌斯反演1.公式狄利克雷卷积1.定义2.狄利克雷卷积的性质及其常见应用3.狄利克雷卷积的代码实现4.狄雷克雷卷积与其他函数的结合应用推导莫比乌斯反演推导μ\muμ和ϕ\phiϕ的关系整除分块1.概念思想2.定
- 杜教筛学习
tanjunming2020
数论算法c++算法
前置知识:狄利克雷卷积杜教筛杜教筛是快速求某些积性函数的前缀和的一种方法,时间复杂度一般能达到O(n23)O(n^{\frac23})O(n32)。设f,gf,gf,g为积性函数,F,GF,GF,G分别是f,gf,gf,g的前缀和。hhh为f,gf,gf,g的狄利克雷卷积,HHH为hhh的前缀和。我们要求FFF,但FFF不好求,而G,HG,HG,H比较好求,我们可以通过G,HG,HG,H得到FFF
- 积性函数小记
tanjunming2020
数论c++
积性函数设数论函数fff,a,ba,ba,b为任意两个互质的质数。如果满足f(a)×f(b)=f(a×b)f(a)\timesf(b)=f(a\timesb)f(a)×f(b)=f(a×b),则称函数fff为积性函数。如果不要求a,ba,ba,b互质,仍然满足f(a)×f(b)=f(a×b)f(a)\timesf(b)=f(a\timesb)f(a)×f(b)=f(a×b),则称函数fff为完全积
- 数论函数、积性函数、和函数
blazeDP
数论抽象代数算法
一、数论函数定义:数论函数指一类函数的称谓,这类函数的共同点是:定义域是正整数N*,值域是一个数集。加法:逐项相加即可数乘:用一个常数x乘f(n)=x∗f(n)例如:,表示正整数n的正因子之和。,表示正整数n的正因子个数。二、积性函数(一)、积性函数定义:如果一个数论函数f()满足:当gcd(n,m)==1时,f(n∗m)=f(n)∗f(m),则f()为积性函数。(二)、完全积性函数定义:当gcd
- 积性函数详解
Sun_AC
积性函数小结积性函数
定义在非数论的领域,积性函数指所有对于任何a,b都有性质f(ab)=f(a)f(b)的函数。在数论中的积性函数:对于正整数n的一个算术函数f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数。若对于某积性函数f(n),就算a,b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的。积性函数举例φ(n)-欧拉函数,计算与n互质的正整数之数目μ(n)
- 积性函数
priority_ez
数论函数积性函数
原文:http://blog.csdn.net/skywalkert/article/details/50500009以下是本人整理~常用公式:①∑d|nφ(n)=n→φ(n)=n−∑d|n,d2时φ(n)为偶数)∑ni=1[gcd(n,i)=1]∗i=n∗φ(n)+[n=1]2表示不大于n且与n互质的正整数总和莫比乌斯函数:μ(n)={(−1)tn=∏ti=1pi0有平方因子莫比乌斯经典公式:[
- 积性函数求前缀和
Drin_E
数论杜教筛
积性函数定义若函数f满足a,b互质有f(a*b)=f(a)*f(b),我们则称f是积性函数。常见的比如欧拉函数,莫比乌斯函数,都属于积性函数。积性函数求前缀和线性筛法,利用积性函数的积性,筛素数同时可以计算积性函数。然而有些问题要求低于线性的复杂度。杜教筛同样利用积性函数的性质。举常见的莫比乌斯函数为例。求∑ni=1μ(i)(1=2于是有s(n)=1-∑ni=2∑⌊ni⌋d=1μ(d)(这里的i表
- 关于积性函数
konjac_HZX
数论函数积性函数数学
概念若函数满足f(n)=f(a)⋅f(b)f(n)=f(a)\cdotf(b)f(n)=f(a)⋅f(b),其中a,ba,ba,b互质,则称函数fff为积性函数。如果a,ba,ba,b不互质还满足f(n)=f(a)⋅f(b)f(n)=f(a)\cdotf(b)f(n)=f(a)⋅f(b),则称函数fff为完全积性函数。性质积性函数的狄利克雷卷积(有关狄利克雷卷积的介绍可以看看我的另一篇博客)都是积
- 欧拉函数的积性证明
Amazing_self
ACM数论学习欧拉函数ACM
欧拉函数的积性证明文章目录欧拉函数的积性证明积性函数证明符号约定证明思路证明过程对1的证明对2的证明对3的证明综上,证得欧拉函数为积性函数。积性函数积性函数是指对于函数fff,当gcd(m,n)=1gcd(m,n)=1gcd(m,n)=1时,f(m)f(n)=f(mn)f(m)f(n)=f(mn)f(m)f(n)=f(mn)。完全积性函数是指对于函数fff,f(m)(n)=f(mn)f(m)(n)
- [日记&做题记录]-Noip2016提高组复赛 倒数十天
躲不过这哀伤
数据结构与算法
写这篇博客的时候有点激动为了让自己不颓还是写写日记存存模板Nov.82016今天早上买了两个蛋挞吃了一个然后就做数论(前天晚上还是想放弃数论但是昨天被数论虐了wocnoip模拟赛出了道杜教筛)然后白天就脑补了几道积性函数把例题过了一遍Submit_Time1696174wohenshuai2154Accepted245432kb10556msC++/Edit1152B2016-11-0816:50
- 牛客练习赛72 D-brz的函数 (莫比乌斯反演)
GCR-
莫比乌斯反演gcd
题目链接求∑i=1n∑j=1nμ(ij)\sum_{i=1}^{n}\sum_{j=1}^{n}μ(ij)∑i=1n∑j=1nμ(ij)推公式:由于积性函数的性质当gcd(i,j)==1gcd(i,j)==1gcd(i,j)==1的时候μ(ij)=μ(i)∗μ(j)μ(ij)=μ(i)*μ(j)μ(ij)=μ(i)∗μ(j)所以式子可以变成这样:∑i=1n∑j=1n[gcd(i,j)==1]μ(i
- 洛谷P4213 杜教筛模板
stdforces
算法
[模板]杜教筛:计算∑i=1nμ(i)∑i=1nϕ(i)\sum_{i=1}^{n}\mu(i)\\\sum_{i=1}^{n}\phi(i)i=1∑nμ(i)i=1∑nϕ(i)Solution:杜教筛是一种能在O(n23)O(n^{\frac{2}{3}})O(n32)时间复杂度下计算积性函数的前缀和的算法,假设我们需要求积性函数f(x)f(x)f(x)的前nnn项和S(n)=∑i=1nf(i)
- 杜教筛【莫比乌斯前缀和,欧拉函数前缀和】推导与模板【一千五百字】
秦小咩
数论进阶数论莫比乌斯反演杜教筛
下图给出杜教筛详细推导过程,前置知识有积性函数和莫比乌斯反演。杜教筛是一种优秀的求积性函数前缀和算法,其时间复杂度受预处理数组的影响,一般开到2/3次幂大小,可使复杂度达到较为优秀的程度。杜教筛的时间复杂度还要取决于预处理数组的大小,将预处理前缀和数组处理到n^(2/3)大小会使杜教筛时间复杂度缩短至O(n^(2/3)),否则会超时【模板】杜教筛(Sum)-洛谷#include#include#i
- 牛客练习赛72 D-brz的函数 莫比乌斯反演 + 差分
狙击美佐
莫比乌斯反演
牛客练习赛72D-brz的函数莫比乌斯反演+差分题意思路Code传送门:https://ac.nowcoder.com/acm/contest/8282/D题意求解∑i=1n∑j=1nμ(ij)求解\sum_{i=1}^n\sum_{j=1}^n\mu(ij)求解i=1∑nj=1∑nμ(ij)思路由积性函数的性质,当m和n互质的时候,μ(mn)=μ(m)μ(n)。即由积性函数的性质,当m和n互质的
- 积性函数系列(一):欧拉函数
天擎525
Math
本系列是数论篇章的第一篇(于是又挖了一个数论的坑orz),主要介绍、证明初等数论中一些重要的概念、结论。在微积分学领域,积性函数指的是具有f(ab)=f(a)f(b)f(ab)=f(a)f(b)的函数,在数论领域这个概念略有不同,仅定义在正整数上,它揭示了整数的很多性质。废话不多说,直奔主题。为了区分通常意义上的函数,我们定义算数函数:定义1.1定义在所有正整数上的函数称为算数函数。在整个积性函数
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring