- 【密码学RSA】共模攻击原理详解_已知e1*e2的共模攻击题
malloc_冲!
rsa密码学
本题需要了解共模攻击推导过程及原理:1.共模攻击原理共模攻击即用两个及以上的公钥(n,e)来加密同一条信息m已知有密文:c1=pow(m,e1,n)c2=pow(m,e2,n)条件:当e1,e2互质,则有gcd(e1,e2)=1根据扩展欧几里德算法,对于不完全为0的整数a,b,gcd(a,b)表示a,b的最大公约数。那么一定存在整数x,y使得gcd(a,b)=ax+by所以得到:e1*s1+e2*
- 数论知识点总结(一)
Mark 85
数学数论算法数据结构
文章目录目录文章目录前言一、数论有哪些二、题法混讲1.素数判断,质数,筛法2.最大公约数和最小公倍数3.快速幂4.约数前言现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣!一、数论有哪些数论原根,素数判断,质数,筛法最大公约数,gcd扩展欧几里德算法,快速幂,exgcd,不定方程,进制,中国剩余定理,CRT,莫比乌斯反演,逆元,Lucas定理,类欧几里得算法,调和级数
- 算法基础-数学知识-欧拉函数、快速幂、扩展欧几里德、中国剩余定理
chirou_
算法c++蓝桥杯欧几里德欧拉函数
算法基础-数学知识-欧拉函数、快速幂、扩展欧几里德、中国剩余定理欧拉函数AcWing874.筛法求欧拉函数快速幂AcWing875.快速幂AcWing876.快速幂求逆元扩展欧几里德(裴蜀定理)AcWing877.扩展欧几里得算法AcWing878.线性同余方程中国剩余定理欧拉函数互质就是两个数的最大公因数只有1,体现到代码里面就是a和b互质,则bmoda=1moda(目前我不是很理解,但是可以这
- 扩展欧几里德求解ax + by = c 的 最小正整数解 ( x, y)
枸杞柠檬茶
ACM扩展欧几里得
大概思路:第一步:给出方程ax+by=c。第二步:算出辗转相除法gcd(a,b)。第三步:运用扩展欧几里德ex_gcd(a,b)-》ax+by=gcd(a,b)的一组解(x,y)。第三步:根据c%gcd(a,b)判断是否ax+by=c有解。第四步:根据ax+by=c的通解公式x1=(x+k*(b/gcd(a,b)))*(c/gcd(a,b)令b1=b/gcd(a,b),所以x1的最小正整数解为:x
- 扩展欧几里德算法详解以及乘法逆元
Stray_Lambs
数学acm扩展算法
转载网址:http://blog.csdn.net/zhjchengfeng5/article/details/7786595有些地方看不懂,但觉得写的很棒,先转载下来,以后慢慢研究……扩展欧几里德算法:谁是欧几里德?自己百度去先介绍什么叫做欧几里德算法有两个数ab,现在,我们要求ab的最大公约数,怎么求?枚举他们的因子?不现实,当ab很大的时候,枚举显得那么的naïve,那怎么做?欧几里德有个十
- Python算法设计 - 拓展欧几里得算法
小鸿的摸鱼日常
python算法设计算法python
目录一、拓展欧几里得算法二、Python算法实现三、作者Info一、拓展欧几里得算法扩展欧几里德算法是数论中最经典的算法之一,其目的用来解决不定方程。用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=GCD(a,b)什么是不定方程?不定方程(丢番图方程)是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等)的方程或方程组。二、Python算法实现defg
- 最大公约数
敲可爱的小超银
.欧几里德算法和扩展欧几里德算法欧几里德算法欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:定理:gcd(a,b)=gcd(b,amodb)证明:a可以表示成a=kb+r,则r=amodb假设d是a,b的一个公约数,则有d|a,d|b,而r=a-kb,因此d|r因此d是(b,amodb)的公约数假设d是(b,amodb)的公约数,则d|b,d|r,但是a
- 扩展欧几里德
JesHrz
扩展欧几里得求解不定方程ax+by=gcd(a,b)的整数解对于方程ax+by=c,如果gcd(a,b)|c,则有解,解为ax+by=gcd(a,b)的解乘以c/gcd(a,b);否则无解longlongexgcd(longlonga,longlongb,longlong&x,longlong&y){if(!b){x=1;y=0;returna;}longlongt=exgcd(b,a%b,y,x
- 数论
weixin_30381317
c/c++数据结构与算法
目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b.筛选法
- 除等数论
じ☆夏妮国婷☆じ
算法除等数论
除等数论目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b
- 第二十九章 数论——中国剩余定理与线性同余方程组
Turing_Sheep
算法合集算法
第二十九章数论——中国剩余定理与线性同余方程组一、中国剩余定理1、作用:2、内容:3、证明:(1)逆元的存在性(2)验证定理的正确性4、代码实现:(1)步骤:(2)问题:(3)代码:一、中国剩余定理1、作用:我们上一章节中,详细地讲解了如何利用扩展欧几里德算法解一个线性同余方程,但是如果我们遇到了线性同余方程组的话,我们就需要用到今天所讲解的中国剩余定理。但是中国剩余定理的成立前提是,方程组中的模
- 第二十八章 数论——扩展欧几里德算法与线性同余方程
Turing_Sheep
算法合集算法
第二十八章扩展欧几里德算法一、裴蜀定理1、定理内容2、定理证明二、扩展欧几里德定理1、作用2、思路3、代码三、线性同余方程1、问题2、思路3、代码一、裴蜀定理1、定理内容对于任意整数aaa和bbb,一定存在整数xxx,yyy使得ax+byax+byax+by是gcd(a,b)gcd(a,b)gcd(a,b)的倍数。如果反过来说的话,如果m=ax+bym=ax+bym=ax+by,那么mmm一定是g
- 第二十七章 数论——快速幂与逆元
Turing_Sheep
算法合集算法
第二十七章快速幂与扩展欧几里德算法一、快速幂1、使用场景2、算法思路(1)二进制优化思想(2)模运算法则3、代码实现(1)问题(2)代码二、快速幂求逆元1、什么是逆元?(1)同余(2)逆元2、逆元的求法(1)欧拉定理(2)费马小定理(3)问题(4)求解逆元一、快速幂1、使用场景我们知道,如果我们想计算一个qkq^kqk,我们可以不断地去乘,但这样的时间复杂度是O(k)O(k)O(k),这个是复杂度
- 数论入门基础(同余定理/费马小定理/扩展欧几里德算法/中国剩余定理)
Allen_0526
数论同余定理费马小定理Exgcd中国剩余定理
本文整理了同余定理/费马小定理/扩展欧几里德算法/中国剩余定理基本的念描述、结论证明和模板应用同余定理1.描述:同余定理是数论中的重要概念。给定一个正整数m,如果两个整数a和b满足(a-b)能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(modm)。2.符号:两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对模m同余或a同余于b模m。记作a≡b(mo
- 夜深人静写算法(三)- 初等数论入门
英雄哪里出来
夜深人静写算法算法线性同余初等数论ACM数学
文章目录一、前言二、数论基本概念1、整除性2、素数1)素数与合数2)素数判定3)素数定理4)素数筛选法3、因数分解1)算术基本定理2)素数拆分3)因子个数4)因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余1)模运算2)快速幂取模3)循环节二、数论基础知识1、欧几里德定理(辗转相除)2、扩展欧几里德定理1)线性同余2)同余方程求解3)逆元3、中国剩余定理4、欧拉函数1)互素2)筛选法求
- 51nod 算法马拉松 集合计数
Dorkdomain
列出等式之后发现是二元一次不定式求正整数解然而并不会求解枚举肯定超时经过一番搜索发现是扩展欧几里德然后现学现卖了一下然而边界问题涉及到四个实数化整并求交集需要考虑的太多一时考虑不清楚决定暴力枚举然后只过了一半数据只好又回头处理边界问题静下心来仔细一思考边界问题也并不是那么难处理集合计数SystemMessage(命题人)基准时间限制:1秒空间限制:131072KB分值:20给出N个固定集合{1,N
- 最大公约数(Gcd)两种算法(Euclid && Stein) [整理]
weixin_33832340
很老的东东了,其实也没啥好整理的,网上很多资料了,就当备用把:-)1.欧几里德算法和扩展欧几里德算法欧几里德算法欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:定理:gcd(a,b)=gcd(b,amodb)证明:a可以表示成a=kb+r,则r=amodb假设d是a,b的一个公约数,则有d|a,d|b,而r=a-kb,因此d|r因此d是(b,amodb)
- C语言如何求最大公约数?错觉?C语言两行代码描述辗转相除法
莫影老师
C语言小题目大智慧公约数C语言C语言编程C语言学习C语言试题
前言本文主要介绍的是C语言常规的一道题,希望对于广大读者学习C语言有一些帮助。使用C语言求解a和b的最大公约数。该问题可以采用辗转相除法去解决!辗转相除法欧几里德算法又称辗转相除法,欧几里德算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里德在其著作《TheElements》中最早描述了这种算法,所以被命名为欧几里德算法。扩展欧几里德算法可用于RSA加密等领域。假如需要求1997和615两
- 扩展欧几里德 中国剩余定理 合并模线性方程组
foreverlin1204
数学天地
1.1.1扩展欧几里得要说扩展必须先从它的非扩展版本说起,对于求两个数的最大公约数,我们有辗转相除法,其核心就是gcd(a,b)=gcd(b,a%b)(a>=b)(1)为什么呢,我们来证明一下令a=k*b+t则a%b=t,若设d是a,b的一个公约数,a%d==0k*b%d==0又因为(k*b+t)%d==0所以t%d==0,这个d包含了a和b的最大公约数,于(1)得证。有了这个作为基础我们来看下扩
- 欧几里德算法、扩展欧几里德算法、乘法逆元
zixiaqian
转http://hi.baidu.com/dongxiang2007/blog/item/db9b98626ce722d5e6113a51.html欧几里德算法、扩展欧几里德算法、乘法逆元2009年05月22日星期五下午12:15最近看了一本书《程序员》里面说的一个面试题:求两个数的最大公约数:SoEasy的题目看过C的人都知道怎么写这个程序1.传统方法:穷举#includeintmain(){i
- ZOJ - 3609 Modular Inverse (扩展欧几里德求乘法逆元)
进修中的涵涵涵
扩展欧几里得
ModularInverseTimeLimit:2SecondsMemoryLimit:65536KBThemodularmodularmultiplicativeinverseofanintegeramodulomisanintegerxsuchthata-1≡x(modm).Thisisequivalenttoax≡1(modm).InputTherearemultipletestcases.
- 扩展欧几里德算法
??yy
voidgcd(inta,intb,int&d,int&x,int&y){if(!b){d=a;x=1;y=0;}else{gcd(b,a%b,d,y,x);y-=x*(a/b);}}扩展欧几里德算法的应用主要有以下三方面:(1)求解不定方程;(2)求解模线性方程(线性同余方程);(3)求解模的逆元;(1)使用扩展欧几里德算法解决不定方程的办法:对于不定整数方程pa+qb=c,若cmodGcd(p
- 扩展欧几里德算法求不定方程
yuxiaoyu.
例题是POJ1061青蛙的约会题目大意是,一个周长为L的圆,A、B两只青蛙,分别位于x、y处,每次分别能跳跃m、n,问最少多少次能够相遇,如若不能输出“Impossible”此题其实就是扩展欧几里德算法-求解不定方程,线性同余方程。设过k1步后两青蛙相遇,则必满足以下等式:(x+m*k1)-(y+n*k1)=k2*L(k2=0,1,2....)//这里的k2:存在一个整数k2,使其满足上式稍微变一
- 模数非互质的同余方程组(非互质版中国剩余定理)
weixin_30596343
之前介绍到的中国剩余定理只能求解模数两两互质的同余方程组。那么,模数如果不一定两两互质的情况应该怎么求呢?下面介绍通过合并方程的方法来解决问题(要用到扩展欧几里德算法)。顾名思义,合并方程就是把所有的同余方程组合并成一个。举个例子,合并同余方程组x%A=a①x%B=b②现在给出两种合并的方法:1)要把①②式合并成x%C=c③易知C一定是A和B的最小公倍数的倍数,否则不可能同时满足①②两式。这里我们
- 关于exgcd算法(扩展欧几里德算法)的几点总结
Object_S
EXGCD算法的概念:一种用来求解形如的同余方程的算法EXGCD算法的时间复杂度:求解的时间复杂度大约为EXGCD算法的代码:#include#includeusingnamespacestd;inta,b,x,y;voidexgcd(inta,intb){if(b==0){x=1,y=0;return;}exgcd(b,a%b);inttemp=x;x=y,y=temp-a/b*y;return
- 数论快速入门(同余、扩展欧几里德、中国剩余定理、大素数测定和整数分解、素数三种筛法、欧拉函数以及各种模板)
Must_so
ACM题解与算法ACM(算法)
数学渣渣愉快的玩了一把数论,来总结一下几种常用的算法入门,不过鶸也是刚刚入门,所以也只是粗略的记录下原理,贴下模板,以及入门题目(感受下模板怎么用的)(PS:文中亮色字体都可以点进去查看百度原文)附赠数论入门训练专题:点我打开专题(题目顺序基本正常,用以配套数论入门)一、同余定理同余式:a≡b(modm)(即a%m==b%m)简单粗暴的说就是:若a-b==m那么a%m==b%m这个模运算性质一眼看
- 欧几里得算法及其扩展以及运用
风灵无畏YY
数论gcdNOIPgcd
以下内容部分来自度娘,另一部分来自百度百科。扩展欧几里德算法liaoy这是本校一位学长关于扩展欧几里得的讲解,讲得很好,欢迎大家阅读【介绍】扩展欧几里德算法是用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=gcd(a,b)=d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。【欧几里得算法】一、概述欧几里德算法又称辗转相除法,用于计算两个整数a,b的
- A/B(逆元)
你就是根号四
数论
逆元定义:对于正整数和,如果有,那么把这个同余方程中的最小正整数解叫做模的逆元。一般用欧几里得扩展来做:ax+by=1;称a和b互为逆元详细扩展欧几里德算法介绍,解决该题的关键是:1、了解扩展欧几里德算法,可以运用其解出gcd(a,b)=ax1+by1中的x1、y1的值2、由题可得以下内容:n=A%9973,则n=A-k*9973。设A/B=x,则A=Bx。所以Bx-k*9973=n。即Bx-99
- 扩展欧几里德算法详解
ltrbless
ACM数学
1、问题引入:有一个经典的问题:直线上的点,求直线ax+by+c=0上有多少个整数点(x,y)满足x->(x1,x2),y->(y1,y2);怎么来找整数解,这时就可以利用扩展欧几里德算法.2、扩展欧几里德算法:先附上代码:voidexgcd(inta,intb,int&d,int&x,int&y){if(!b)d=a,x=1,y=0;else{exgcd(b,a%b,d,x,y);y-=x*(a
- 数论基础(gcd + 拓展欧几里得)
Southan97
AlgorithmsNumberTheoryMathematics
求连个数的最大公约数gcd:typedeflonglongll;constintMAXN=10000+7;llgcd(lla,llb){returnb?gcd(b,a%b):a;}拓展欧几里得:欧几里得定理:gcd(a,b)=gcd(b,a%b);gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)扩展欧几里德算法是用来在已知a,b求解一组x,y使得ax+by=Gcd(
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found