There is an interesting and simple one person game. Suppose there is a number axis under your feet. You are at point A at first and your aim is point B. There are 6 kinds of operations you can perform in one step. That is to go left or right by a,b and c, here c always equals to a+b.
You must arrive B as soon as possible. Please calculate the minimum number of steps.
There are multiple test cases. The first line of input is an integer T(0 < T ≤ 1000) indicates the number of test cases. Then T test cases follow. Each test case is represented by a line containing four integers 4 integers A, B, a and b, separated by spaces. (-231 ≤ A, B < 231, 0 < a, b < 231)
For each test case, output the minimum number of steps. If it's impossible to reach point B, output "-1" instead.
2 0 1 1 2 0 1 2 4
1 -1
题意:有两个端点A,B,每次你可以向左或者向右走a,b,a+b的距离,问最少走多少次能从A走到B。
思路:设A,B之间的距离为dis,a+b=c,那么题目等价于min{|x|+|y| | (ax+by=dis) || (ax+cy=dis) || (bx+cy=dis) }.注:扩展欧几里德算出来ax+by=gcd(c,d)中的特殊值x,y一定满足|x|+|y|最小,但是如果算的是ax+by=d,(d%gcd(a,b),但是d!=gcd(a,b))那么就不一定|x|+|y|最小,此时要使得x趋近于0,或者使得y趋近于0,这样算出来的k带入然后取几者中的最小值,因为x,y的关系式是一条直线,|x|+|y|=m在直线接近坐标轴的情况下取到最小值。
#include<iostream> #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<vector> #include<map> #include<set> #include<queue> #include<stack> #include<string> #include<algorithm> using namespace std; typedef long long ll; typedef long double ldb; #define inf 10000000000000LL #define pi acos(-1.0) #define MOD 1000000007 #define maxn 1000005 ll extend_gcd(ll a,ll b,ll &x,ll &y){ if(b==0){ x=1;y=0;return a; } ll d=extend_gcd(b,a%b,y,x); y-=a/b*x; return d; } ll niyuan(ll a,ll n){ ll x,y; ll d=extend_gcd(a,n,x,y); if(d==1) return (x%n+n)%n; else return -1; } ll gcd(ll a,ll b){ return (b>0)?gcd(b,a%b):a; } ll solve(ll a,ll b,ll dis) { ll x,y,d,x0,y0,ans; d=extend_gcd(a,b,x,y); if(dis%d!=0)return -1; x0=x*dis/d; y0=y*dis/d; ll aa,bb; aa=a/d; bb=b/d; ll k; k=-x0/bb-1; ans=abs(x0+bb*k)+abs(y0-aa*k); k++; ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) ); k++; ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) ); k=y0/aa-1; ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) ); k++; ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) ); k++; ans=min(ans,abs(x0+bb*k)+abs(y0-aa*k) ); return ans; } int main() { int n,m,i,j,T; ll x1,x2,a,b,c,x,y; scanf("%d",&T); while(T--) { scanf("%lld%lld%lld%lld",&x1,&x2,&a,&b); ll dis=abs(x2-x1); c=a+b; ll ans=solve(a,b,dis); ans=min(ans,solve(a,c,dis)); ans=min(ans,solve(b,c,dis)); printf("%lld\n",ans); } return 0; }