- 贝叶斯滤波:卡尔曼滤波、直方图滤波、粒子滤波
于小咸
SLAM漫谈slam卡尔曼滤波算法
卡尔曼滤波、粒子滤波、直方图滤波是贝叶斯滤波的三种实现形式,在《概率机器人》这本书中,按照“线性→非线性”的顺序讲解,先介绍卡尔曼滤波,再介绍直方图滤波和粒子滤波。但我发现先介绍直方图滤波效果可能会比较好,因为直方图滤波是贝叶斯滤波最直观的实现方案,读者可以很方便地从贝叶斯滤波的离散形式直接推出简单直方图滤波。掌握贝叶斯滤波的一般形式后,再学习高斯噪声假设下的卡尔曼滤波,掌握起来会比较轻松。遵循“
- Autoware 开源框架车辆运动学建模推导
秃头队长
Autoware
学习Autoware开源框架的资料整理,侵删!开源自动驾驶框架Autoware介绍Autoware包含以下模块:1.定位:通过结合GNSS和IMU传感器的3D地图和SLAM算法来实现定位2.检测:使用具有传感器融合算法和深度神经网络的摄像机以及LiDAR3.预测和规划:基于概率机器人技术和基于规则的系统,部分还使用深度神经网络4.控制:Autoware向车辆输出的速度和角速度的扭曲量以上四个模块覆
- 概率机器人-定位-马尔可夫和高斯
小小地卜师
移动机器人定位可以认为是坐标变换的问题,建立地图坐标系与机器人本体坐标系之间的对应关系的过程。马尔科夫定位=贝叶斯滤波+马尔科夫准则扩展卡尔曼定位=EKF+运动模型+基于特征的测量模型无迹卡尔曼定位=UKF+运动模型+基于特征的测量模型
- 深入理解如何不费吹灰之力搭建一个无人驾驶车(三)2D-小车拓展部分(AMCL+EKF)(EKF协方差矩阵如何写?)
吴家征
无人驾驶人工智能无人驾驶rosslam概率机器人学
三、2D小车定位拓展本文讲一下不是很难的高中部分,主要是AMCL及EKF,两种定位方法3.1AMCL定位首先讲一下AMCL算法,自适应蒙特卡罗粒子滤波定位,其实在gmapping中,我们就要用轮式里程计的odom产生粒子,有些东西,讲大家可能不懂,可以见概率机器人或机器人学状态估计,在贝叶斯滤波中,置信度的更新是靠观测,即一个归一化系数*P(Zt|xt)*预测置信度bel(xt),这个预测bel一
- 《概率机器人》学习笔记
啊呀哟嘿
介绍这篇文章用于记录《概率机器人》(《ProbalbilisticRobotics》)这本书的学习笔记和心得,将会主要按照书中的章节进行组织,穿插一些补充内容和自己的理解。笔记第一章:绪论概率机器人的主要思想就是用概率理论的运算去明确地表示机器人感知和行为的不确定性。换句话说,不再只依赖可能出现情况的单一的“最好推测”,而是用概率算法来表示在整个推测空间的概率分布信息。第二章:递归状态估计概率基础
- 一起自学SLAM算法:7.2 SLAM中的概率理论
机器人研究猿
一起自学SLAM算法人工智能机器人自动驾驶概率论
连载文章,长期更新,欢迎关注:考虑实际机器人问题中存在的众多不确定性因素,比如传感器测量噪声、电机控制偏差、计算机软件计算精度近似等。利用概率描述机器人中的不确定性,这样机器人中的不确定性就可以在概率理论框架下被计算和推演,这就是著名的概率机器人学[4]。为了帮助大家理解不确定性是如何被计算的,下面用概率机器人学[4]p6中的经典例子给大家作说明。图7-3概率机器人学如图7-3所示,假设机器人在长
- 【ROS简介】
Dymc
ROS人工智能ros
ROS简介1ROS是什么?2ROS能干什么?3存在的瓶颈?4涉及的技术(概率机器人技术)5内部构造1ROS是什么?ROS的核心是一个分布式、低耦合的通讯机制;ROS提供多种机器人开发工具,实现数据可视化、机器人仿真等功能;ROS开源社区中包含大量机器人应用功能,可快速开发功能原型;ROS已经成为一个庞大的生态系统,包含机器人领域的方方面面,同时也得到了越来越多第三方工具的支持,为机器人开发提供了系
- 【非无不系列】《概率机器人》读书笔记
荆赤潮
机器人学习笔记
非官方无责任不靠谱系列之概率机器人。《概率机器人》出版年:2016,作者:[美]塞巴斯蒂安·特龙一、课本部分此书每章后面都有文献综述,很有特色。第一章机器人学中的不确定性:①传感器;②执行器,来自如控制噪声、磨损及机械故障的影响,但是有些中型机构,如工业机器人手臂,是非常准确和可靠的;③机器人软件,世界的所有内部模型都是近似模型,模型只是部分地模拟机器人及环境的基本物理特性。最先进的机器人系统使用
- 概率机器人阅读笔记
Massif_Li
读书笔记概率论
第一章绪论机器人学是一门通过计算机控制设备来感知和操纵物理世界的科学,脱离开结构化的工作环境,客观世界中存在着大量的不确定性:机器人环境的不可预测传感器感知信息的局限性执行机构的不确定性机器人软件中抽象模型的误差。为了使机器人接纳这些不确定性,《概率机器人》致力于将机器人感知与行为的不确定性用概率理论明确地表示出来,推测整个空间中概率分布信息,表示出每种可能的模糊性和置信度,形成相对鲁棒的控制方式
- 《概率机器人》学习笔记之短序
茶色少年
《概率机器人》学习笔记机器人笔记
从2016年开始,我真正接触移动机器人领域,从机器人的路径规划开始做起,继而研究机器人的避障策略。我把《自主移动机器人导论》过了一遍,但觉得对机器人定位问题认识得太浅,不能深刻认识定位所以然的问题,于是义无反顾地看起了《概率机器人》中文版(由于英语一般,而且新术语太多,所以先从中文版开始熟悉其中的内容).为了能够更好地学习其中的内容,我下决心写关于这本书的学习笔记,记录自己学习这本书的历程,反过来
- 经典论文回顾 - RGB-D SLAMv2 : 3D Mapping with an RGB-D Camera
原野寻踪
RGB-DSLAM
前言本文属于RGB-DSLAMv2的论文,2013年发表于机器人领域顶级期刊TRO。一作FelixEndres,导师团都是大牛:弗莱堡大学WolframBurgard教授,也是书籍《概率机器人》的作者;DanielCremers则是慕尼黑工业大学机器人实验室的大佬。鉴于该文章属于经典文章,本文不像以前文章那番做详细的翻译式分析,更多是站在当代角度,如ORBSLAM2已经大火的年代,去回顾这篇文章的
- 关于机器人状态估计(0.3)-科学简介
紫川Purple River
VIO与多传感器融合融态计算机视觉线性代数矩阵
这篇就是纯科普了,现代的大佬们太多了,以后要是有时间大家可以去看论文哈:书的话高翔博士的"视觉SLAM十四讲"与Barfoot教授(高翔,谢晓佳等译)的"机器人学中的状态估计"是非常好的书籍,"概率机器人"太难了,建议硕士以下的同学不要先看这个。未来国内从事状态估计与机器人行业的同学们尤其应感谢高翔博士,是他主动将这个学科全面地引导至我国并将其拆解,将阳春白雪变为了下里巴人,使大家能够更好地掌握。
- EKF-SLAM原理推导
古路
slam#滤波#2DLidarEKF-SLAM扩展卡尔曼滤波EKFEKF-SLAM推导扩展卡尔曼SLAM
EKF-SLAM0.引言1.运动模型1.1.里程计模型1.2.运动更新2.测量模型3.地图更新3.1.新地图点的协方差3.2新地图点与原状态之间的协方差4.数据关联5.demo0.引言参考链接。基本是基于概率机器人进行实现的,是一个很好的学习材料。此博客只是个人学习记录。ref01.第五课EKFSLAMref02.EKF_SLAM实践。特别好的一篇文章。AlgorithmExtendedKalma
- 概率机器人笔记(1):概率论基础内容回顾
Eonekne
概率机器人学习笔记slam自动驾驶概率论
一、样本空间与随机事件1.随机试验相同条件下,试验可以重复进行试验结果不止一个,但是试验之前可以知道所有可能出现的结果试验前不能确定每次试验的结果是哪一个2.样本空间随机试验中所有可能的结果(样本点)组成的集合。3.随机事件随机试验的样本空间的子集,即样本点的集合。二、概率与独立1.概率非负性:对于任意随机事件A,P(A)≥0P(A)\geq0P(A)≥0规范性:对于必然事件S,P(S)=1P(S
- Hector代码原理推导
kindel
slamc++slamlinux
一、占用栅格地图顾名思义,栅格就是一个个的网格,由于现实世界是连续的,而计算机只能处理离散的数据因此要将传感器数据进行离散化,还有一个好处是能够节省储存空间和计算时间。图一取自《概率机器人》一书的栅格地图描述一张栅格地图分别需要理解以下几个概念:栅格:可以类比图片的像素点,拥有分辨率、占用率的属性。分辨率:是指一个网格能表示现实世界的距离长短。如:0.05米/每网格,则一个(10米,10米)的点,
- 【SLAM入门】概率机器人中的一些重要概念(2)
我绕过山腰雨声敲敲
概率机器人机器人人工智能算法
文章目录第七章:移动机器人定位:马尔科夫与高斯第八章:移动机器人定位:栅格与蒙特卡洛第九章:占用栅格地图构建第十章:同时定位与地图构建第十一章:GraphSLAM算法第十七章:探测第七章:移动机器人定位:马尔科夫与高斯定位:移动机器人定位就是确定相对于给定地图环境的机器人位姿,也被称为位置估计。几乎所有机器人技术的任务都需要正在被操控的目标位置的信息。定位的过程被看做是进行坐标转换,地图以全局坐标
- 【SLAM入门】概率机器人中的一些重要概念(1)
我绕过山腰雨声敲敲
概率机器人机器人人工智能
特龙.概率机器人.机械工业出版社,2017.Print.国际电气工程先进技术译丛.第一章:绪论机器人学的不确定性机器人环境robotenvironment传感器的量程和分辨率:测量噪声机器人的执行机构robotactuation:控制噪声机器人软件:对世界进行抽象表达的内部模型internalmodel概率机器人学probabilisticrobotics:用概率理论的运算去明确地表示不确定性,用
- 9 概率机器人 Probabilistic Robotics 二值贝叶斯滤波 占据栅格地图 occupancy grid mapping
Fengyu19930920
概率机器人滤波Robot概率论机器学习
文章目录1前言2二值贝叶斯滤波2.1理论基础2.2算法流程2.3重要公式推导3实例:占据栅格地图(occupancygridmapping)4参考文献1前言如果通过传感器对一个环境中固定状态进行评估,该状态为二值状态(例如判断一扇门的开关状态),那么就需要用到二值贝叶斯滤波二值贝叶斯滤波的一个重要应用就是通过激光雷达建立占据栅格地图,这会在下文中做介绍2二值贝叶斯滤波2.1理论基础对于一个静态状态
- 《概率机器人》速度运动模型gmapping中代码解析
Being_young
概率机器人机器人移动
一个刚性移动机器人的构型通常用6个变量来描述:他的三维直角坐标系,以及相对外部坐标系的三个欧拉角(RPY横滚,俯仰,偏航),所以那么在平面环境中一般用三个变量既可以描述,称之为位姿。所以一般而平面上机器人的位姿信息也就是机器人的二维平面坐标(x,y)及其方位角θ,用这个向量来表示:⎛⎝⎜xyθ⎞⎠⎟没有方向的位姿就叫做位置(Location).那我们知道概率运动学中的条件密度是:p(xt|ut,x
- 无人驾驶1:卡尔曼滤波原理及实现(以无人车观测为实例)
科学边界
无人驾驶自动驾驶卡尔曼滤波算法
本系列文章,参考如下资料:我真正理解卡尔曼滤波是看这篇文章,建议直接看原文:1http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/对上文的翻译:2.https://zhuanlan.zhihu.com/p/399126333.优达学城无人驾驶纳米课程4.《概率机器人》SebastianTrun,WoframBurgard,Die
- Probabilistic Robotics 概率机器人 课后习题
肥猫有梦想
修正了原文的一些错误第二章习题1.机器人使用一个可以测量0~3m距离的传感器。为了简化,假定真实的距离在这个范围中均匀分布。很不幸的是,传感器会坏掉。当传感器故障时,不管传感器的锥形测量范围内实际测距结果应该是多少,其输出测距值均小于1m已知对于传感器故障的先验概率是。设想机器人查询了N次传感器,每次测量值都小于1m。对于N=1,2,…,10的传感器故障的后验概率是多少?用公式表示相关的概率模型。
- 概率机器人:测距仪的地图匹配模型
JasonLi0012
概率机器人笔记slam自动驾驶
地图匹配模型地图匹配(MapMatching)技术是一种通用的基于相关性的测量模型技术。地图匹配通过将扫描数据(Scan)转换为占用地图(OccupancyMap),将少量的连续扫描编制到局部地图(LocalMaps)上。局部地图是相对于机器人位姿的地图信息,用参量mlocalm_{local}mlocal。模型将局部地图信息mlocalm_{local}mlocal同全局地图信息mmm比较,当m
- 概率机器人:基于地图的运动学模型
JasonLi0012
概率机器人笔记自动驾驶
基于地图的运动学模型模型建立实际运行下,在机器人运动时将给定地图mmm,地图中包括机器人能够或不能够通过的空间信息。例如占用地图(Occupancymaps),其中分为占用区域(Occupied)和闲置区域(Free)。机器人在运动时,应保证位姿始终处于闲置区域内。采用p(xt∣ut,xt−1,m)p(x_t|u_t,x_{t-1},m)p(xt∣ut,xt−1,m)表示基于地图信息的运动学模型(
- 概率机器人:测距传感器的波束模型
JasonLi0012
slam概率机器人笔记自动驾驶
机器人感知测量模型测量模型:用于描述客观世界中生成传感器测量数据的过程。模型的特性取决于传感器:成像传感器:通过投影几何学建立声纳传感器:通过描述声波和声波在环境表面上的反射建立测量模型定义为一个条件概率密度p(zt∣xt,m)p(z_t|x_t,m)p(zt∣xt,m),表示在环境地图mmm和机器人位姿为xtx_txt的条件下,传感器测量得到ztz_tzt的概率密度。传感器在进行测量时,将会产生
- 概率机器人_阅读3_c6感知概率模型
chepwavege
概率机器人
REF:书本教材:http://probabilistic-robotics.informatik.uni-freiburg.de/ppt/读书笔记:https://blog.csdn.net/daqianc/article/category/8250671Abbr:TBD牢记重点感知:(中文版page130,英文P149)所有测量值都是不准确的。所有测量都是独立的,互不影响(独立事件)地图的定义
- 《概率机器人》学习笔记之短序一二
茶色少年
《概率机器人》学习笔记概率机器人算法机器人数学
《概率机器人》目前我仅大概过了一遍第I部分和第II部分,便发现这本书结构非常清晰,主要把第一部分的基础理论学扎实,后面的第II和第III部分便不会学得头大.第I部分第2~4章主要介绍了构成所有算法基础的数学基础:首先引入概率机器人技术的核心就是由传感器数据来估计状态这个思路,对概率机器人进行建模时,引出了先验概率、后验概率等概念,进而引出了本书理论的基石-贝叶斯准则.在贝叶斯准则的基础上,讨论了贝
- 概率机器人:测距仪的似然域模型
JasonLi0012
概率机器人笔记slam自动驾驶
测距仪的似然域模型似然域模型(Likelihoodfieldmodel)克服了波束模型的局限性,能够在混乱小空间内,得到较为光滑的后验并大幅提高计算效率。似然域模型是一种特设(adhoc)算法,无合适的物理解释。将障碍物检测的似然描述为地图坐标的函数,称为似然域。模型建立首先,模型将传感器扫描终点ztz_tzt映射至地图的全局坐标系(Map坐标系)。假设机器人在时刻ttt的位姿xt=[XYθ]Tx
- 机器人控制概率基础:条件概率、全概率定理、贝叶斯准则、置信分布等
大二哈
写在前面:本文为原创,如需转载请注明出处。欢迎大家留言共同探讨,有误的地方也希望指出。另如果有好的SLAM、ROS等相关交流群也希望可以留言给我,在此先谢过了。本文参考:《概率机器人》0引言概率是进行机器人控制、定位与建图的核心基础知识,相信这一点大家都深有体会。各种滤波算法都是根据贝叶斯概率公式的基础所衍生出来的算法。其实这点也很好理解,毕竟任何对外界的测量都是包含一定的不确定性的,而且运行的执
- 2020 书单
嘿哈哈哈
MBA读书笔记2020书单程序员MBA
年度强推:《ThePersonalMBA/在家就能读MBA》,每一章,每一节,每一句话,都能引起对人生的无限思考,BeforeManagetheBusiness,ManageYourself!2020书单书名书评推荐(未完)《视觉SLAM十四讲》没有SLAM,虚拟现实终将只能在轮椅上✨✨✨✨(未完)《多视图几何》计算机几何的圣经✨✨✨✨✨(未完)《概率机器人》SLAM滤波方法✨✨✨✨(未完)《计算
- 概率机器人——卡尔曼滤波
jcsm__
robotics概率论算法
前一篇贝叶斯滤波中提到了贝叶斯滤波不是一种实用的方法,没有办法在计算机中进行表达。是因为贝叶斯是一种抽象的滤波器,其中的置信度表示都是抽象的,没有明确的表达式,没有办法计算积分。尽管如此,贝叶斯给我们提供了一种关于状态最优估计的方法,本篇及后续可能更新的方法皆是贝叶斯滤波的实现方式。1、高斯滤波在正式介绍卡尔曼之前,需要先对高斯滤波做一个说明。高斯滤波是一种递归状态估计器,为了解决贝叶斯滤波器中置
- sql统计相同项个数并按名次显示
朱辉辉33
javaoracle
现在有如下这样一个表:
A表
ID Name time
------------------------------
0001 aaa 2006-11-18
0002 ccc 2006-11-18
0003 eee 2006-11-18
0004 aaa 2006-11-18
0005 eee 2006-11-18
0004 aaa 2006-11-18
0002 ccc 20
- Android+Jquery Mobile学习系列-目录
白糖_
JQuery Mobile
最近在研究学习基于Android的移动应用开发,准备给家里人做一个应用程序用用。向公司手机移动团队咨询了下,觉得使用Android的WebView上手最快,因为WebView等于是一个内置浏览器,可以基于html页面开发,不用去学习Android自带的七七八八的控件。然后加上Jquery mobile的样式渲染和事件等,就能非常方便的做动态应用了。
从现在起,往后一段时间,我打算
- 如何给线程池命名
daysinsun
线程池
在系统运行后,在线程快照里总是看到线程池的名字为pool-xx,这样导致很不好定位,怎么给线程池一个有意义的名字呢。参照ThreadPoolExecutor类的ThreadFactory,自己实现ThreadFactory接口,重写newThread方法即可。参考代码如下:
public class Named
- IE 中"HTML Parsing Error:Unable to modify the parent container element before the
周凡杨
html解析errorreadyState
错误: IE 中"HTML Parsing Error:Unable to modify the parent container element before the child element is closed"
现象: 同事之间几个IE 测试情况下,有的报这个错,有的不报。经查询资料后,可归纳以下原因。
- java上传
g21121
java
我们在做web项目中通常会遇到上传文件的情况,用struts等框架的会直接用的自带的标签和组件,今天说的是利用servlet来完成上传。
我们这里利用到commons-fileupload组件,相关jar包可以取apache官网下载:http://commons.apache.org/
下面是servlet的代码:
//定义一个磁盘文件工厂
DiskFileItemFactory fact
- SpringMVC配置学习
510888780
springmvc
spring MVC配置详解
现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了。不过要想灵活运用Spring MVC来应对大多数的Web开发,就必须要掌握它的配置及原理。
一、Spring MVC环境搭建:(Spring 2.5.6 + Hi
- spring mvc-jfreeChart 柱图(1)
布衣凌宇
jfreechart
第一步:下载jfreeChart包,注意是jfreeChart文件lib目录下的,jcommon-1.0.23.jar和jfreechart-1.0.19.jar两个包即可;
第二步:配置web.xml;
web.xml代码如下
<servlet>
<servlet-name>jfreechart</servlet-nam
- 我的spring学习笔记13-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java P
- java 线程池使用 Runnable&Callable&Future
antlove
javathreadRunnablecallablefuture
1. 创建线程池
ExecutorService executorService = Executors.newCachedThreadPool();
2. 执行一次线程,调用Runnable接口实现
Future<?> future = executorService.submit(new DefaultRunnable());
System.out.prin
- XML语法元素结构的总结
百合不是茶
xml树结构
1.XML介绍1969年 gml (主要目的是要在不同的机器进行通信的数据规范)1985年 sgml standard generralized markup language1993年 html(www网)1998年 xml extensible markup language
- 改变eclipse编码格式
bijian1013
eclipse编码格式
1.改变整个工作空间的编码格式
改变整个工作空间的编码格式,这样以后新建的文件也是新设置的编码格式。
Eclipse->window->preferences->General->workspace-
- javascript中return的设计缺陷
bijian1013
JavaScriptAngularJS
代码1:
<script>
var gisService = (function(window)
{
return
{
name:function ()
{
alert(1);
}
};
})(this);
gisService.name();
&l
- 【持久化框架MyBatis3八】Spring集成MyBatis3
bit1129
Mybatis3
pom.xml配置
Maven的pom中主要包括:
MyBatis
MyBatis-Spring
Spring
MySQL-Connector-Java
Druid
applicationContext.xml配置
<?xml version="1.0" encoding="UTF-8"?>
&
- java web项目启动时自动加载自定义properties文件
bitray
javaWeb监听器相对路径
创建一个类
public class ContextInitListener implements ServletContextListener
使得该类成为一个监听器。用于监听整个容器生命周期的,主要是初始化和销毁的。
类创建后要在web.xml配置文件中增加一个简单的监听器配置,即刚才我们定义的类。
<listener>
<des
- 用nginx区分文件大小做出不同响应
ronin47
昨晚和前21v的同事聊天,说到我离职后一些技术上的更新。其中有个给某大客户(游戏下载类)的特殊需求设计,因为文件大小差距很大——估计是大版本和补丁的区别——又走的是同一个域名,而squid在响应比较大的文件时,尤其是初次下载的时候,性能比较差,所以拆成两组服务器,squid服务于较小的文件,通过pull方式从peer层获取,nginx服务于较大的文件,通过push方式由peer层分发同步。外部发布
- java-67-扑克牌的顺子.从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2-10为数字本身,A为1,J为11,Q为12,K为13,而大
bylijinnan
java
package com.ljn.base;
import java.util.Arrays;
import java.util.Random;
public class ContinuousPoker {
/**
* Q67 扑克牌的顺子 从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。
* 2-10为数字本身,A为1,J为1
- 翟鸿燊老师语录
ccii
翟鸿燊
一、国学应用智慧TAT之亮剑精神A
1. 角色就是人格
就像你一回家的时候,你一进屋里面,你已经是儿子,是姑娘啦,给老爸老妈倒怀水吧,你还觉得你是老总呢?还拿派呢?就像今天一样,你们往这儿一坐,你们之间是什么,同学,是朋友。
还有下属最忌讳的就是领导向他询问情况的时候,什么我不知道,我不清楚,该你知道的你凭什么不知道
- [光速与宇宙]进行光速飞行的一些问题
comsci
问题
在人类整体进入宇宙时代,即将开展深空宇宙探索之前,我有几个猜想想告诉大家
仅仅是猜想。。。未经官方证实
1:要在宇宙中进行光速飞行,必须首先获得宇宙中的航行通行证,而这个航行通行证并不是我们平常认为的那种带钢印的证书,是什么呢? 下面我来告诉
- oracle undo解析
cwqcwqmax9
oracle
oracle undo解析2012-09-24 09:02:01 我来说两句 作者:虫师收藏 我要投稿
Undo是干嘛用的? &nb
- java中各种集合的详细介绍
dashuaifu
java集合
一,java中各种集合的关系图 Collection 接口的接口 对象的集合 ├ List 子接口 &n
- 卸载windows服务的方法
dcj3sjt126com
windowsservice
卸载Windows服务的方法
在Windows中,有一类程序称为服务,在操作系统内核加载完成后就开始加载。这里程序往往运行在操作系统的底层,因此资源占用比较大、执行效率比较高,比较有代表性的就是杀毒软件。但是一旦因为特殊原因不能正确卸载这些程序了,其加载在Windows内的服务就不容易删除了。即便是删除注册表中的相 应项目,虽然不启动了,但是系统中仍然存在此项服务,只是没有加载而已。如果安装其他
- Warning: The Copy Bundle Resources build phase contains this target's Info.plist
dcj3sjt126com
iosxcode
http://developer.apple.com/iphone/library/qa/qa2009/qa1649.html
Excerpt:
You are getting this warning because you probably added your Info.plist file to your Copy Bundle
- 2014之C++学习笔记(一)
Etwo
C++EtwoEtwoiterator迭代器
已经有很长一段时间没有写博客了,可能大家已经淡忘了Etwo这个人的存在,这一年多以来,本人从事了AS的相关开发工作,但最近一段时间,AS在天朝的没落,相信有很多码农也都清楚,现在的页游基本上达到饱和,手机上的游戏基本被unity3D与cocos占据,AS基本没有容身之处。so。。。最近我并不打算直接转型
- js跨越获取数据问题记录
haifengwuch
jsonpjsonAjax
js的跨越问题,普通的ajax无法获取服务器返回的值。
第一种解决方案,通过getson,后台配合方式,实现。
Java后台代码:
protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
String ca
- 蓝色jQuery导航条
ini
JavaScripthtmljqueryWebhtml5
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/39.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery鼠标悬停上下滑动导航条 - 柯乐义<
- linux部署jdk,tomcat,mysql
kerryg
jdktomcatlinuxmysql
1、安装java环境jdk:
一般系统都会默认自带的JDK,但是不太好用,都会卸载了,然后重新安装。
1.1)、卸载:
(rpm -qa :查询已经安装哪些软件包;
rmp -q 软件包:查询指定包是否已
- DOMContentLoaded VS onload VS onreadystatechange
mutongwu
jqueryjs
1. DOMContentLoaded 在页面html、script、style加载完毕即可触发,无需等待所有资源(image/iframe)加载完毕。(IE9+)
2. onload是最早支持的事件,要求所有资源加载完毕触发。
3. onreadystatechange 开始在IE引入,后来其它浏览器也有一定的实现。涉及以下 document , applet, embed, fra
- sql批量插入数据
qifeifei
批量插入
hi,
自己在做工程的时候,遇到批量插入数据的数据修复场景。我的思路是在插入前准备一个临时表,临时表的整理就看当时的选择条件了,临时表就是要插入的数据集,最后再批量插入到数据库中。
WITH tempT AS (
SELECT
item_id AS combo_id,
item_id,
now() AS create_date
FROM
a
- log4j打印日志文件 如何实现相对路径到 项目工程下
thinkfreer
Weblog4j应用服务器日志
最近为了实现统计一个网站的访问量,记录用户的登录信息,以方便站长实时了解自己网站的访问情况,选择了Apache 的log4j,但是在选择相对路径那块 卡主了,X度了好多方法(其实大多都是一样的内用,还一个字都不差的),都没有能解决问题,无奈搞了2天终于解决了,与大家分享一下
需求:
用户登录该网站时,把用户的登录名,ip,时间。统计到一个txt文档里,以方便其他系统调用此txt。项目名
- linux下mysql-5.6.23.tar.gz安装与配置
笑我痴狂
mysqllinuxunix
1.卸载系统默认的mysql
[root@localhost ~]# rpm -qa | grep mysql
mysql-libs-5.1.66-2.el6_3.x86_64
mysql-devel-5.1.66-2.el6_3.x86_64
mysql-5.1.66-2.el6_3.x86_64
[root@localhost ~]# rpm -e mysql-libs-5.1