- 贝叶斯滤波:卡尔曼滤波、直方图滤波、粒子滤波
于小咸
SLAM漫谈slam卡尔曼滤波算法
卡尔曼滤波、粒子滤波、直方图滤波是贝叶斯滤波的三种实现形式,在《概率机器人》这本书中,按照“线性→非线性”的顺序讲解,先介绍卡尔曼滤波,再介绍直方图滤波和粒子滤波。但我发现先介绍直方图滤波效果可能会比较好,因为直方图滤波是贝叶斯滤波最直观的实现方案,读者可以很方便地从贝叶斯滤波的离散形式直接推出简单直方图滤波。掌握贝叶斯滤波的一般形式后,再学习高斯噪声假设下的卡尔曼滤波,掌握起来会比较轻松。遵循“
- Autoware 开源框架车辆运动学建模推导
秃头队长
Autoware
学习Autoware开源框架的资料整理,侵删!开源自动驾驶框架Autoware介绍Autoware包含以下模块:1.定位:通过结合GNSS和IMU传感器的3D地图和SLAM算法来实现定位2.检测:使用具有传感器融合算法和深度神经网络的摄像机以及LiDAR3.预测和规划:基于概率机器人技术和基于规则的系统,部分还使用深度神经网络4.控制:Autoware向车辆输出的速度和角速度的扭曲量以上四个模块覆
- 概率机器人-定位-马尔可夫和高斯
小小地卜师
移动机器人定位可以认为是坐标变换的问题,建立地图坐标系与机器人本体坐标系之间的对应关系的过程。马尔科夫定位=贝叶斯滤波+马尔科夫准则扩展卡尔曼定位=EKF+运动模型+基于特征的测量模型无迹卡尔曼定位=UKF+运动模型+基于特征的测量模型
- 深入理解如何不费吹灰之力搭建一个无人驾驶车(三)2D-小车拓展部分(AMCL+EKF)(EKF协方差矩阵如何写?)
吴家征
无人驾驶人工智能无人驾驶rosslam概率机器人学
三、2D小车定位拓展本文讲一下不是很难的高中部分,主要是AMCL及EKF,两种定位方法3.1AMCL定位首先讲一下AMCL算法,自适应蒙特卡罗粒子滤波定位,其实在gmapping中,我们就要用轮式里程计的odom产生粒子,有些东西,讲大家可能不懂,可以见概率机器人或机器人学状态估计,在贝叶斯滤波中,置信度的更新是靠观测,即一个归一化系数*P(Zt|xt)*预测置信度bel(xt),这个预测bel一
- 《概率机器人》学习笔记
啊呀哟嘿
介绍这篇文章用于记录《概率机器人》(《ProbalbilisticRobotics》)这本书的学习笔记和心得,将会主要按照书中的章节进行组织,穿插一些补充内容和自己的理解。笔记第一章:绪论概率机器人的主要思想就是用概率理论的运算去明确地表示机器人感知和行为的不确定性。换句话说,不再只依赖可能出现情况的单一的“最好推测”,而是用概率算法来表示在整个推测空间的概率分布信息。第二章:递归状态估计概率基础
- 一起自学SLAM算法:7.2 SLAM中的概率理论
机器人研究猿
一起自学SLAM算法人工智能机器人自动驾驶概率论
连载文章,长期更新,欢迎关注:考虑实际机器人问题中存在的众多不确定性因素,比如传感器测量噪声、电机控制偏差、计算机软件计算精度近似等。利用概率描述机器人中的不确定性,这样机器人中的不确定性就可以在概率理论框架下被计算和推演,这就是著名的概率机器人学[4]。为了帮助大家理解不确定性是如何被计算的,下面用概率机器人学[4]p6中的经典例子给大家作说明。图7-3概率机器人学如图7-3所示,假设机器人在长
- 【ROS简介】
Dymc
ROS人工智能ros
ROS简介1ROS是什么?2ROS能干什么?3存在的瓶颈?4涉及的技术(概率机器人技术)5内部构造1ROS是什么?ROS的核心是一个分布式、低耦合的通讯机制;ROS提供多种机器人开发工具,实现数据可视化、机器人仿真等功能;ROS开源社区中包含大量机器人应用功能,可快速开发功能原型;ROS已经成为一个庞大的生态系统,包含机器人领域的方方面面,同时也得到了越来越多第三方工具的支持,为机器人开发提供了系
- 【非无不系列】《概率机器人》读书笔记
荆赤潮
机器人学习笔记
非官方无责任不靠谱系列之概率机器人。《概率机器人》出版年:2016,作者:[美]塞巴斯蒂安·特龙一、课本部分此书每章后面都有文献综述,很有特色。第一章机器人学中的不确定性:①传感器;②执行器,来自如控制噪声、磨损及机械故障的影响,但是有些中型机构,如工业机器人手臂,是非常准确和可靠的;③机器人软件,世界的所有内部模型都是近似模型,模型只是部分地模拟机器人及环境的基本物理特性。最先进的机器人系统使用
- 概率机器人阅读笔记
Massif_Li
读书笔记概率论
第一章绪论机器人学是一门通过计算机控制设备来感知和操纵物理世界的科学,脱离开结构化的工作环境,客观世界中存在着大量的不确定性:机器人环境的不可预测传感器感知信息的局限性执行机构的不确定性机器人软件中抽象模型的误差。为了使机器人接纳这些不确定性,《概率机器人》致力于将机器人感知与行为的不确定性用概率理论明确地表示出来,推测整个空间中概率分布信息,表示出每种可能的模糊性和置信度,形成相对鲁棒的控制方式
- 《概率机器人》学习笔记之短序
茶色少年
《概率机器人》学习笔记机器人笔记
从2016年开始,我真正接触移动机器人领域,从机器人的路径规划开始做起,继而研究机器人的避障策略。我把《自主移动机器人导论》过了一遍,但觉得对机器人定位问题认识得太浅,不能深刻认识定位所以然的问题,于是义无反顾地看起了《概率机器人》中文版(由于英语一般,而且新术语太多,所以先从中文版开始熟悉其中的内容).为了能够更好地学习其中的内容,我下决心写关于这本书的学习笔记,记录自己学习这本书的历程,反过来
- 经典论文回顾 - RGB-D SLAMv2 : 3D Mapping with an RGB-D Camera
原野寻踪
RGB-DSLAM
前言本文属于RGB-DSLAMv2的论文,2013年发表于机器人领域顶级期刊TRO。一作FelixEndres,导师团都是大牛:弗莱堡大学WolframBurgard教授,也是书籍《概率机器人》的作者;DanielCremers则是慕尼黑工业大学机器人实验室的大佬。鉴于该文章属于经典文章,本文不像以前文章那番做详细的翻译式分析,更多是站在当代角度,如ORBSLAM2已经大火的年代,去回顾这篇文章的
- 关于机器人状态估计(0.3)-科学简介
紫川Purple River
VIO与多传感器融合融态计算机视觉线性代数矩阵
这篇就是纯科普了,现代的大佬们太多了,以后要是有时间大家可以去看论文哈:书的话高翔博士的"视觉SLAM十四讲"与Barfoot教授(高翔,谢晓佳等译)的"机器人学中的状态估计"是非常好的书籍,"概率机器人"太难了,建议硕士以下的同学不要先看这个。未来国内从事状态估计与机器人行业的同学们尤其应感谢高翔博士,是他主动将这个学科全面地引导至我国并将其拆解,将阳春白雪变为了下里巴人,使大家能够更好地掌握。
- EKF-SLAM原理推导
古路
slam#滤波#2DLidarEKF-SLAM扩展卡尔曼滤波EKFEKF-SLAM推导扩展卡尔曼SLAM
EKF-SLAM0.引言1.运动模型1.1.里程计模型1.2.运动更新2.测量模型3.地图更新3.1.新地图点的协方差3.2新地图点与原状态之间的协方差4.数据关联5.demo0.引言参考链接。基本是基于概率机器人进行实现的,是一个很好的学习材料。此博客只是个人学习记录。ref01.第五课EKFSLAMref02.EKF_SLAM实践。特别好的一篇文章。AlgorithmExtendedKalma
- 概率机器人笔记(1):概率论基础内容回顾
Eonekne
概率机器人学习笔记slam自动驾驶概率论
一、样本空间与随机事件1.随机试验相同条件下,试验可以重复进行试验结果不止一个,但是试验之前可以知道所有可能出现的结果试验前不能确定每次试验的结果是哪一个2.样本空间随机试验中所有可能的结果(样本点)组成的集合。3.随机事件随机试验的样本空间的子集,即样本点的集合。二、概率与独立1.概率非负性:对于任意随机事件A,P(A)≥0P(A)\geq0P(A)≥0规范性:对于必然事件S,P(S)=1P(S
- Hector代码原理推导
kindel
slamc++slamlinux
一、占用栅格地图顾名思义,栅格就是一个个的网格,由于现实世界是连续的,而计算机只能处理离散的数据因此要将传感器数据进行离散化,还有一个好处是能够节省储存空间和计算时间。图一取自《概率机器人》一书的栅格地图描述一张栅格地图分别需要理解以下几个概念:栅格:可以类比图片的像素点,拥有分辨率、占用率的属性。分辨率:是指一个网格能表示现实世界的距离长短。如:0.05米/每网格,则一个(10米,10米)的点,
- 【SLAM入门】概率机器人中的一些重要概念(2)
我绕过山腰雨声敲敲
概率机器人机器人人工智能算法
文章目录第七章:移动机器人定位:马尔科夫与高斯第八章:移动机器人定位:栅格与蒙特卡洛第九章:占用栅格地图构建第十章:同时定位与地图构建第十一章:GraphSLAM算法第十七章:探测第七章:移动机器人定位:马尔科夫与高斯定位:移动机器人定位就是确定相对于给定地图环境的机器人位姿,也被称为位置估计。几乎所有机器人技术的任务都需要正在被操控的目标位置的信息。定位的过程被看做是进行坐标转换,地图以全局坐标
- 【SLAM入门】概率机器人中的一些重要概念(1)
我绕过山腰雨声敲敲
概率机器人机器人人工智能
特龙.概率机器人.机械工业出版社,2017.Print.国际电气工程先进技术译丛.第一章:绪论机器人学的不确定性机器人环境robotenvironment传感器的量程和分辨率:测量噪声机器人的执行机构robotactuation:控制噪声机器人软件:对世界进行抽象表达的内部模型internalmodel概率机器人学probabilisticrobotics:用概率理论的运算去明确地表示不确定性,用
- 9 概率机器人 Probabilistic Robotics 二值贝叶斯滤波 占据栅格地图 occupancy grid mapping
Fengyu19930920
概率机器人滤波Robot概率论机器学习
文章目录1前言2二值贝叶斯滤波2.1理论基础2.2算法流程2.3重要公式推导3实例:占据栅格地图(occupancygridmapping)4参考文献1前言如果通过传感器对一个环境中固定状态进行评估,该状态为二值状态(例如判断一扇门的开关状态),那么就需要用到二值贝叶斯滤波二值贝叶斯滤波的一个重要应用就是通过激光雷达建立占据栅格地图,这会在下文中做介绍2二值贝叶斯滤波2.1理论基础对于一个静态状态
- 《概率机器人》速度运动模型gmapping中代码解析
Being_young
概率机器人机器人移动
一个刚性移动机器人的构型通常用6个变量来描述:他的三维直角坐标系,以及相对外部坐标系的三个欧拉角(RPY横滚,俯仰,偏航),所以那么在平面环境中一般用三个变量既可以描述,称之为位姿。所以一般而平面上机器人的位姿信息也就是机器人的二维平面坐标(x,y)及其方位角θ,用这个向量来表示:⎛⎝⎜xyθ⎞⎠⎟没有方向的位姿就叫做位置(Location).那我们知道概率运动学中的条件密度是:p(xt|ut,x
- 无人驾驶1:卡尔曼滤波原理及实现(以无人车观测为实例)
科学边界
无人驾驶自动驾驶卡尔曼滤波算法
本系列文章,参考如下资料:我真正理解卡尔曼滤波是看这篇文章,建议直接看原文:1http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/对上文的翻译:2.https://zhuanlan.zhihu.com/p/399126333.优达学城无人驾驶纳米课程4.《概率机器人》SebastianTrun,WoframBurgard,Die
- Probabilistic Robotics 概率机器人 课后习题
肥猫有梦想
修正了原文的一些错误第二章习题1.机器人使用一个可以测量0~3m距离的传感器。为了简化,假定真实的距离在这个范围中均匀分布。很不幸的是,传感器会坏掉。当传感器故障时,不管传感器的锥形测量范围内实际测距结果应该是多少,其输出测距值均小于1m已知对于传感器故障的先验概率是。设想机器人查询了N次传感器,每次测量值都小于1m。对于N=1,2,…,10的传感器故障的后验概率是多少?用公式表示相关的概率模型。
- 概率机器人:测距仪的地图匹配模型
JasonLi0012
概率机器人笔记slam自动驾驶
地图匹配模型地图匹配(MapMatching)技术是一种通用的基于相关性的测量模型技术。地图匹配通过将扫描数据(Scan)转换为占用地图(OccupancyMap),将少量的连续扫描编制到局部地图(LocalMaps)上。局部地图是相对于机器人位姿的地图信息,用参量mlocalm_{local}mlocal。模型将局部地图信息mlocalm_{local}mlocal同全局地图信息mmm比较,当m
- 概率机器人:基于地图的运动学模型
JasonLi0012
概率机器人笔记自动驾驶
基于地图的运动学模型模型建立实际运行下,在机器人运动时将给定地图mmm,地图中包括机器人能够或不能够通过的空间信息。例如占用地图(Occupancymaps),其中分为占用区域(Occupied)和闲置区域(Free)。机器人在运动时,应保证位姿始终处于闲置区域内。采用p(xt∣ut,xt−1,m)p(x_t|u_t,x_{t-1},m)p(xt∣ut,xt−1,m)表示基于地图信息的运动学模型(
- 概率机器人:测距传感器的波束模型
JasonLi0012
slam概率机器人笔记自动驾驶
机器人感知测量模型测量模型:用于描述客观世界中生成传感器测量数据的过程。模型的特性取决于传感器:成像传感器:通过投影几何学建立声纳传感器:通过描述声波和声波在环境表面上的反射建立测量模型定义为一个条件概率密度p(zt∣xt,m)p(z_t|x_t,m)p(zt∣xt,m),表示在环境地图mmm和机器人位姿为xtx_txt的条件下,传感器测量得到ztz_tzt的概率密度。传感器在进行测量时,将会产生
- 概率机器人_阅读3_c6感知概率模型
chepwavege
概率机器人
REF:书本教材:http://probabilistic-robotics.informatik.uni-freiburg.de/ppt/读书笔记:https://blog.csdn.net/daqianc/article/category/8250671Abbr:TBD牢记重点感知:(中文版page130,英文P149)所有测量值都是不准确的。所有测量都是独立的,互不影响(独立事件)地图的定义
- 《概率机器人》学习笔记之短序一二
茶色少年
《概率机器人》学习笔记概率机器人算法机器人数学
《概率机器人》目前我仅大概过了一遍第I部分和第II部分,便发现这本书结构非常清晰,主要把第一部分的基础理论学扎实,后面的第II和第III部分便不会学得头大.第I部分第2~4章主要介绍了构成所有算法基础的数学基础:首先引入概率机器人技术的核心就是由传感器数据来估计状态这个思路,对概率机器人进行建模时,引出了先验概率、后验概率等概念,进而引出了本书理论的基石-贝叶斯准则.在贝叶斯准则的基础上,讨论了贝
- 概率机器人:测距仪的似然域模型
JasonLi0012
概率机器人笔记slam自动驾驶
测距仪的似然域模型似然域模型(Likelihoodfieldmodel)克服了波束模型的局限性,能够在混乱小空间内,得到较为光滑的后验并大幅提高计算效率。似然域模型是一种特设(adhoc)算法,无合适的物理解释。将障碍物检测的似然描述为地图坐标的函数,称为似然域。模型建立首先,模型将传感器扫描终点ztz_tzt映射至地图的全局坐标系(Map坐标系)。假设机器人在时刻ttt的位姿xt=[XYθ]Tx
- 机器人控制概率基础:条件概率、全概率定理、贝叶斯准则、置信分布等
大二哈
写在前面:本文为原创,如需转载请注明出处。欢迎大家留言共同探讨,有误的地方也希望指出。另如果有好的SLAM、ROS等相关交流群也希望可以留言给我,在此先谢过了。本文参考:《概率机器人》0引言概率是进行机器人控制、定位与建图的核心基础知识,相信这一点大家都深有体会。各种滤波算法都是根据贝叶斯概率公式的基础所衍生出来的算法。其实这点也很好理解,毕竟任何对外界的测量都是包含一定的不确定性的,而且运行的执
- 2020 书单
嘿哈哈哈
MBA读书笔记2020书单程序员MBA
年度强推:《ThePersonalMBA/在家就能读MBA》,每一章,每一节,每一句话,都能引起对人生的无限思考,BeforeManagetheBusiness,ManageYourself!2020书单书名书评推荐(未完)《视觉SLAM十四讲》没有SLAM,虚拟现实终将只能在轮椅上✨✨✨✨(未完)《多视图几何》计算机几何的圣经✨✨✨✨✨(未完)《概率机器人》SLAM滤波方法✨✨✨✨(未完)《计算
- 概率机器人——卡尔曼滤波
jcsm__
robotics概率论算法
前一篇贝叶斯滤波中提到了贝叶斯滤波不是一种实用的方法,没有办法在计算机中进行表达。是因为贝叶斯是一种抽象的滤波器,其中的置信度表示都是抽象的,没有明确的表达式,没有办法计算积分。尽管如此,贝叶斯给我们提供了一种关于状态最优估计的方法,本篇及后续可能更新的方法皆是贝叶斯滤波的实现方式。1、高斯滤波在正式介绍卡尔曼之前,需要先对高斯滤波做一个说明。高斯滤波是一种递归状态估计器,为了解决贝叶斯滤波器中置
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d