- 贝叶斯滤波:卡尔曼滤波、直方图滤波、粒子滤波
于小咸
SLAM漫谈slam卡尔曼滤波算法
卡尔曼滤波、粒子滤波、直方图滤波是贝叶斯滤波的三种实现形式,在《概率机器人》这本书中,按照“线性→非线性”的顺序讲解,先介绍卡尔曼滤波,再介绍直方图滤波和粒子滤波。但我发现先介绍直方图滤波效果可能会比较好,因为直方图滤波是贝叶斯滤波最直观的实现方案,读者可以很方便地从贝叶斯滤波的离散形式直接推出简单直方图滤波。掌握贝叶斯滤波的一般形式后,再学习高斯噪声假设下的卡尔曼滤波,掌握起来会比较轻松。遵循“
- Autoware 开源框架车辆运动学建模推导
秃头队长
Autoware
学习Autoware开源框架的资料整理,侵删!开源自动驾驶框架Autoware介绍Autoware包含以下模块:1.定位:通过结合GNSS和IMU传感器的3D地图和SLAM算法来实现定位2.检测:使用具有传感器融合算法和深度神经网络的摄像机以及LiDAR3.预测和规划:基于概率机器人技术和基于规则的系统,部分还使用深度神经网络4.控制:Autoware向车辆输出的速度和角速度的扭曲量以上四个模块覆
- 概率机器人-定位-马尔可夫和高斯
小小地卜师
移动机器人定位可以认为是坐标变换的问题,建立地图坐标系与机器人本体坐标系之间的对应关系的过程。马尔科夫定位=贝叶斯滤波+马尔科夫准则扩展卡尔曼定位=EKF+运动模型+基于特征的测量模型无迹卡尔曼定位=UKF+运动模型+基于特征的测量模型
- 深入理解如何不费吹灰之力搭建一个无人驾驶车(三)2D-小车拓展部分(AMCL+EKF)(EKF协方差矩阵如何写?)
吴家征
无人驾驶人工智能无人驾驶rosslam概率机器人学
三、2D小车定位拓展本文讲一下不是很难的高中部分,主要是AMCL及EKF,两种定位方法3.1AMCL定位首先讲一下AMCL算法,自适应蒙特卡罗粒子滤波定位,其实在gmapping中,我们就要用轮式里程计的odom产生粒子,有些东西,讲大家可能不懂,可以见概率机器人或机器人学状态估计,在贝叶斯滤波中,置信度的更新是靠观测,即一个归一化系数*P(Zt|xt)*预测置信度bel(xt),这个预测bel一
- 《概率机器人》学习笔记
啊呀哟嘿
介绍这篇文章用于记录《概率机器人》(《ProbalbilisticRobotics》)这本书的学习笔记和心得,将会主要按照书中的章节进行组织,穿插一些补充内容和自己的理解。笔记第一章:绪论概率机器人的主要思想就是用概率理论的运算去明确地表示机器人感知和行为的不确定性。换句话说,不再只依赖可能出现情况的单一的“最好推测”,而是用概率算法来表示在整个推测空间的概率分布信息。第二章:递归状态估计概率基础
- 一起自学SLAM算法:7.2 SLAM中的概率理论
机器人研究猿
一起自学SLAM算法人工智能机器人自动驾驶概率论
连载文章,长期更新,欢迎关注:考虑实际机器人问题中存在的众多不确定性因素,比如传感器测量噪声、电机控制偏差、计算机软件计算精度近似等。利用概率描述机器人中的不确定性,这样机器人中的不确定性就可以在概率理论框架下被计算和推演,这就是著名的概率机器人学[4]。为了帮助大家理解不确定性是如何被计算的,下面用概率机器人学[4]p6中的经典例子给大家作说明。图7-3概率机器人学如图7-3所示,假设机器人在长
- 【ROS简介】
Dymc
ROS人工智能ros
ROS简介1ROS是什么?2ROS能干什么?3存在的瓶颈?4涉及的技术(概率机器人技术)5内部构造1ROS是什么?ROS的核心是一个分布式、低耦合的通讯机制;ROS提供多种机器人开发工具,实现数据可视化、机器人仿真等功能;ROS开源社区中包含大量机器人应用功能,可快速开发功能原型;ROS已经成为一个庞大的生态系统,包含机器人领域的方方面面,同时也得到了越来越多第三方工具的支持,为机器人开发提供了系
- 【非无不系列】《概率机器人》读书笔记
荆赤潮
机器人学习笔记
非官方无责任不靠谱系列之概率机器人。《概率机器人》出版年:2016,作者:[美]塞巴斯蒂安·特龙一、课本部分此书每章后面都有文献综述,很有特色。第一章机器人学中的不确定性:①传感器;②执行器,来自如控制噪声、磨损及机械故障的影响,但是有些中型机构,如工业机器人手臂,是非常准确和可靠的;③机器人软件,世界的所有内部模型都是近似模型,模型只是部分地模拟机器人及环境的基本物理特性。最先进的机器人系统使用
- 概率机器人阅读笔记
Massif_Li
读书笔记概率论
第一章绪论机器人学是一门通过计算机控制设备来感知和操纵物理世界的科学,脱离开结构化的工作环境,客观世界中存在着大量的不确定性:机器人环境的不可预测传感器感知信息的局限性执行机构的不确定性机器人软件中抽象模型的误差。为了使机器人接纳这些不确定性,《概率机器人》致力于将机器人感知与行为的不确定性用概率理论明确地表示出来,推测整个空间中概率分布信息,表示出每种可能的模糊性和置信度,形成相对鲁棒的控制方式
- 《概率机器人》学习笔记之短序
茶色少年
《概率机器人》学习笔记机器人笔记
从2016年开始,我真正接触移动机器人领域,从机器人的路径规划开始做起,继而研究机器人的避障策略。我把《自主移动机器人导论》过了一遍,但觉得对机器人定位问题认识得太浅,不能深刻认识定位所以然的问题,于是义无反顾地看起了《概率机器人》中文版(由于英语一般,而且新术语太多,所以先从中文版开始熟悉其中的内容).为了能够更好地学习其中的内容,我下决心写关于这本书的学习笔记,记录自己学习这本书的历程,反过来
- 经典论文回顾 - RGB-D SLAMv2 : 3D Mapping with an RGB-D Camera
原野寻踪
RGB-DSLAM
前言本文属于RGB-DSLAMv2的论文,2013年发表于机器人领域顶级期刊TRO。一作FelixEndres,导师团都是大牛:弗莱堡大学WolframBurgard教授,也是书籍《概率机器人》的作者;DanielCremers则是慕尼黑工业大学机器人实验室的大佬。鉴于该文章属于经典文章,本文不像以前文章那番做详细的翻译式分析,更多是站在当代角度,如ORBSLAM2已经大火的年代,去回顾这篇文章的
- 关于机器人状态估计(0.3)-科学简介
紫川Purple River
VIO与多传感器融合融态计算机视觉线性代数矩阵
这篇就是纯科普了,现代的大佬们太多了,以后要是有时间大家可以去看论文哈:书的话高翔博士的"视觉SLAM十四讲"与Barfoot教授(高翔,谢晓佳等译)的"机器人学中的状态估计"是非常好的书籍,"概率机器人"太难了,建议硕士以下的同学不要先看这个。未来国内从事状态估计与机器人行业的同学们尤其应感谢高翔博士,是他主动将这个学科全面地引导至我国并将其拆解,将阳春白雪变为了下里巴人,使大家能够更好地掌握。
- EKF-SLAM原理推导
古路
slam#滤波#2DLidarEKF-SLAM扩展卡尔曼滤波EKFEKF-SLAM推导扩展卡尔曼SLAM
EKF-SLAM0.引言1.运动模型1.1.里程计模型1.2.运动更新2.测量模型3.地图更新3.1.新地图点的协方差3.2新地图点与原状态之间的协方差4.数据关联5.demo0.引言参考链接。基本是基于概率机器人进行实现的,是一个很好的学习材料。此博客只是个人学习记录。ref01.第五课EKFSLAMref02.EKF_SLAM实践。特别好的一篇文章。AlgorithmExtendedKalma
- 概率机器人笔记(1):概率论基础内容回顾
Eonekne
概率机器人学习笔记slam自动驾驶概率论
一、样本空间与随机事件1.随机试验相同条件下,试验可以重复进行试验结果不止一个,但是试验之前可以知道所有可能出现的结果试验前不能确定每次试验的结果是哪一个2.样本空间随机试验中所有可能的结果(样本点)组成的集合。3.随机事件随机试验的样本空间的子集,即样本点的集合。二、概率与独立1.概率非负性:对于任意随机事件A,P(A)≥0P(A)\geq0P(A)≥0规范性:对于必然事件S,P(S)=1P(S
- Hector代码原理推导
kindel
slamc++slamlinux
一、占用栅格地图顾名思义,栅格就是一个个的网格,由于现实世界是连续的,而计算机只能处理离散的数据因此要将传感器数据进行离散化,还有一个好处是能够节省储存空间和计算时间。图一取自《概率机器人》一书的栅格地图描述一张栅格地图分别需要理解以下几个概念:栅格:可以类比图片的像素点,拥有分辨率、占用率的属性。分辨率:是指一个网格能表示现实世界的距离长短。如:0.05米/每网格,则一个(10米,10米)的点,
- 【SLAM入门】概率机器人中的一些重要概念(2)
我绕过山腰雨声敲敲
概率机器人机器人人工智能算法
文章目录第七章:移动机器人定位:马尔科夫与高斯第八章:移动机器人定位:栅格与蒙特卡洛第九章:占用栅格地图构建第十章:同时定位与地图构建第十一章:GraphSLAM算法第十七章:探测第七章:移动机器人定位:马尔科夫与高斯定位:移动机器人定位就是确定相对于给定地图环境的机器人位姿,也被称为位置估计。几乎所有机器人技术的任务都需要正在被操控的目标位置的信息。定位的过程被看做是进行坐标转换,地图以全局坐标
- 【SLAM入门】概率机器人中的一些重要概念(1)
我绕过山腰雨声敲敲
概率机器人机器人人工智能
特龙.概率机器人.机械工业出版社,2017.Print.国际电气工程先进技术译丛.第一章:绪论机器人学的不确定性机器人环境robotenvironment传感器的量程和分辨率:测量噪声机器人的执行机构robotactuation:控制噪声机器人软件:对世界进行抽象表达的内部模型internalmodel概率机器人学probabilisticrobotics:用概率理论的运算去明确地表示不确定性,用
- 9 概率机器人 Probabilistic Robotics 二值贝叶斯滤波 占据栅格地图 occupancy grid mapping
Fengyu19930920
概率机器人滤波Robot概率论机器学习
文章目录1前言2二值贝叶斯滤波2.1理论基础2.2算法流程2.3重要公式推导3实例:占据栅格地图(occupancygridmapping)4参考文献1前言如果通过传感器对一个环境中固定状态进行评估,该状态为二值状态(例如判断一扇门的开关状态),那么就需要用到二值贝叶斯滤波二值贝叶斯滤波的一个重要应用就是通过激光雷达建立占据栅格地图,这会在下文中做介绍2二值贝叶斯滤波2.1理论基础对于一个静态状态
- 《概率机器人》速度运动模型gmapping中代码解析
Being_young
概率机器人机器人移动
一个刚性移动机器人的构型通常用6个变量来描述:他的三维直角坐标系,以及相对外部坐标系的三个欧拉角(RPY横滚,俯仰,偏航),所以那么在平面环境中一般用三个变量既可以描述,称之为位姿。所以一般而平面上机器人的位姿信息也就是机器人的二维平面坐标(x,y)及其方位角θ,用这个向量来表示:⎛⎝⎜xyθ⎞⎠⎟没有方向的位姿就叫做位置(Location).那我们知道概率运动学中的条件密度是:p(xt|ut,x
- 无人驾驶1:卡尔曼滤波原理及实现(以无人车观测为实例)
科学边界
无人驾驶自动驾驶卡尔曼滤波算法
本系列文章,参考如下资料:我真正理解卡尔曼滤波是看这篇文章,建议直接看原文:1http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/对上文的翻译:2.https://zhuanlan.zhihu.com/p/399126333.优达学城无人驾驶纳米课程4.《概率机器人》SebastianTrun,WoframBurgard,Die
- Probabilistic Robotics 概率机器人 课后习题
肥猫有梦想
修正了原文的一些错误第二章习题1.机器人使用一个可以测量0~3m距离的传感器。为了简化,假定真实的距离在这个范围中均匀分布。很不幸的是,传感器会坏掉。当传感器故障时,不管传感器的锥形测量范围内实际测距结果应该是多少,其输出测距值均小于1m已知对于传感器故障的先验概率是。设想机器人查询了N次传感器,每次测量值都小于1m。对于N=1,2,…,10的传感器故障的后验概率是多少?用公式表示相关的概率模型。
- 概率机器人:测距仪的地图匹配模型
JasonLi0012
概率机器人笔记slam自动驾驶
地图匹配模型地图匹配(MapMatching)技术是一种通用的基于相关性的测量模型技术。地图匹配通过将扫描数据(Scan)转换为占用地图(OccupancyMap),将少量的连续扫描编制到局部地图(LocalMaps)上。局部地图是相对于机器人位姿的地图信息,用参量mlocalm_{local}mlocal。模型将局部地图信息mlocalm_{local}mlocal同全局地图信息mmm比较,当m
- 概率机器人:基于地图的运动学模型
JasonLi0012
概率机器人笔记自动驾驶
基于地图的运动学模型模型建立实际运行下,在机器人运动时将给定地图mmm,地图中包括机器人能够或不能够通过的空间信息。例如占用地图(Occupancymaps),其中分为占用区域(Occupied)和闲置区域(Free)。机器人在运动时,应保证位姿始终处于闲置区域内。采用p(xt∣ut,xt−1,m)p(x_t|u_t,x_{t-1},m)p(xt∣ut,xt−1,m)表示基于地图信息的运动学模型(
- 概率机器人:测距传感器的波束模型
JasonLi0012
slam概率机器人笔记自动驾驶
机器人感知测量模型测量模型:用于描述客观世界中生成传感器测量数据的过程。模型的特性取决于传感器:成像传感器:通过投影几何学建立声纳传感器:通过描述声波和声波在环境表面上的反射建立测量模型定义为一个条件概率密度p(zt∣xt,m)p(z_t|x_t,m)p(zt∣xt,m),表示在环境地图mmm和机器人位姿为xtx_txt的条件下,传感器测量得到ztz_tzt的概率密度。传感器在进行测量时,将会产生
- 概率机器人_阅读3_c6感知概率模型
chepwavege
概率机器人
REF:书本教材:http://probabilistic-robotics.informatik.uni-freiburg.de/ppt/读书笔记:https://blog.csdn.net/daqianc/article/category/8250671Abbr:TBD牢记重点感知:(中文版page130,英文P149)所有测量值都是不准确的。所有测量都是独立的,互不影响(独立事件)地图的定义
- 《概率机器人》学习笔记之短序一二
茶色少年
《概率机器人》学习笔记概率机器人算法机器人数学
《概率机器人》目前我仅大概过了一遍第I部分和第II部分,便发现这本书结构非常清晰,主要把第一部分的基础理论学扎实,后面的第II和第III部分便不会学得头大.第I部分第2~4章主要介绍了构成所有算法基础的数学基础:首先引入概率机器人技术的核心就是由传感器数据来估计状态这个思路,对概率机器人进行建模时,引出了先验概率、后验概率等概念,进而引出了本书理论的基石-贝叶斯准则.在贝叶斯准则的基础上,讨论了贝
- 概率机器人:测距仪的似然域模型
JasonLi0012
概率机器人笔记slam自动驾驶
测距仪的似然域模型似然域模型(Likelihoodfieldmodel)克服了波束模型的局限性,能够在混乱小空间内,得到较为光滑的后验并大幅提高计算效率。似然域模型是一种特设(adhoc)算法,无合适的物理解释。将障碍物检测的似然描述为地图坐标的函数,称为似然域。模型建立首先,模型将传感器扫描终点ztz_tzt映射至地图的全局坐标系(Map坐标系)。假设机器人在时刻ttt的位姿xt=[XYθ]Tx
- 机器人控制概率基础:条件概率、全概率定理、贝叶斯准则、置信分布等
大二哈
写在前面:本文为原创,如需转载请注明出处。欢迎大家留言共同探讨,有误的地方也希望指出。另如果有好的SLAM、ROS等相关交流群也希望可以留言给我,在此先谢过了。本文参考:《概率机器人》0引言概率是进行机器人控制、定位与建图的核心基础知识,相信这一点大家都深有体会。各种滤波算法都是根据贝叶斯概率公式的基础所衍生出来的算法。其实这点也很好理解,毕竟任何对外界的测量都是包含一定的不确定性的,而且运行的执
- 2020 书单
嘿哈哈哈
MBA读书笔记2020书单程序员MBA
年度强推:《ThePersonalMBA/在家就能读MBA》,每一章,每一节,每一句话,都能引起对人生的无限思考,BeforeManagetheBusiness,ManageYourself!2020书单书名书评推荐(未完)《视觉SLAM十四讲》没有SLAM,虚拟现实终将只能在轮椅上✨✨✨✨(未完)《多视图几何》计算机几何的圣经✨✨✨✨✨(未完)《概率机器人》SLAM滤波方法✨✨✨✨(未完)《计算
- 概率机器人——卡尔曼滤波
jcsm__
robotics概率论算法
前一篇贝叶斯滤波中提到了贝叶斯滤波不是一种实用的方法,没有办法在计算机中进行表达。是因为贝叶斯是一种抽象的滤波器,其中的置信度表示都是抽象的,没有明确的表达式,没有办法计算积分。尽管如此,贝叶斯给我们提供了一种关于状态最优估计的方法,本篇及后续可能更新的方法皆是贝叶斯滤波的实现方式。1、高斯滤波在正式介绍卡尔曼之前,需要先对高斯滤波做一个说明。高斯滤波是一种递归状态估计器,为了解决贝叶斯滤波器中置
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本