E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
李航统计学习笔记
机器学习02决策树模型
1、什么是决策树参考
李航
老师的《统计学习方法》中对决策树的定义:分类决策树模型是一种描述对实例进行分类的属性结构。决策树有结点(node)和有向边(direcetededge)组成。
灰色小站
·
2020-08-16 09:47
机器学习
决策树与R语言(RPART)
关于决策树理论方面的介绍,
李航
的《统计机器学习》第五章有很好的讲解。
tarim
·
2020-08-16 08:04
机器学习三要素
Title:机器学习三要素category:机器学习tags:CS机器学习人工智能深度学习summary:统计机器学习三要素,模型+策略+算法,主要出自
李航
的《统计学习方法》致谢模型损失函数总结策略总结算法广告深度学习目录链接本文完整版链接致谢本文来自以下内容
sndnyangd
·
2020-08-16 01:16
机器学习
成长记录
学习
MOOC
复现经典:《统计学习方法》第18章 概率潜在语义分析
第18章概率潜在语义分析本文是
李航
老师的《统计学习方法》一书的代码复现。作者:黄海广备注:代码都可以在github中下载。我将陆续将代码发布在公众号“机器学习初学者”,可以在这个专辑在线阅读。
风度78
·
2020-08-15 14:30
Google Brain 研究员梁辰:从零开始搜索机器学习算法(附视频、PPT)
AutoML-Zero团队核心成员梁辰做了题为《AutoML-Zero:EvolvingMachineLearningAlgorithmsfromScratch》的学术报告,并和特约嘉宾、字节跳动人工智能实验室总监
李航
进行了对话
BAAIBeijing
·
2020-08-15 05:17
常见分布与假设检验|概率
统计学习笔记
3常见分布与假设检验文章目录3常见分布与假设检验1一般随机变量1.1随机变量的两种类型1.2离散型随机变量1.3连续型随机变量2常见分布2.1离散型分布2.1.1二项分布(Binomialdistribution)2.1.2泊松分布(Poissondistribution)2.1.3二项分布,泊松分布,正态分布的关系2.1.4其他离散型随机分布几何分布(Geometricdistribution)
PenguinAsHeathen
·
2020-08-14 18:27
概率统计学习笔记
方差分析|概率
统计学习笔记
方差分析1概要方差分析(Analysisofvariance,ANOVA)主要研究分类变量作为自变量时,对因变量的影响是否是显著的。方差分析的方法是由20世纪的统计学家RonaldAylmerFisher在1918年到1925年之间提出并陆续完善起来的,该方法刚开始是用于解决田间实验的数据分析问题,因此,方差分析的学习是和实验设计、实验数据的分析密不可分的。实验设计和方差分析都有自己相应的语言。因
PenguinAsHeathen
·
2020-08-14 18:27
概率统计学习笔记
隐马尔科夫模型(Hidden Markov Model,HMM)
https://blog.csdn.net/shibing624/article/details/52399235前言在
李航
的《统计学方法》第十章有对隐马尔
leichangqing
·
2020-08-14 17:12
机器学习算法
前向后向算法
https://blog.csdn.net/Hearthougan/article/details/77930786本文是自己学习隐马尔科夫模型的一个总结,为了自己以后方便查阅,也算作是
李航
老师的《统计学习方法
lgb_love
·
2020-08-14 07:28
机器学习
单层感知机(Single Layer Perceptron)原理及Matlab实现
单层感知机(SingleLayerPerceptron)原理及Matlab实现前言单层感知机学习策略损失函数的构造损失函数的最优化求解matlab实现动态可视化过程前言本文参考
李航
老师的《统计学习方法》
顧辰
·
2020-08-13 22:43
深度学习
机器学习
《统计学习方法(第二版)》
李航
读书笔记 (4)第一章习题手写解答 伯努利模型的极大似然估计和贝叶斯估计;通过经验风险最小化推导极大似然估计
《统计学习方法(第二版)》
李航
读书笔记(4)第一章习题手写解答伯努利模型的极大似然估计和贝叶斯估计;通过经验风险最小化推导极大似然估计监督学习方法又可以分为生成方法(generativeapproach
THU丶白起
·
2020-08-13 22:39
《统计学习方法(第二版)》李航
读书笔记
李航
《统计学习方法》第一章 机器学习三要素
chapter1统计学习方法概论统计学习三要素model模型假设空间决策函数的集合f={f|Y=f(X)}参数空间/thetastrategy策略:1)如何选择模型?考量:i.损失函数e.g.如果是Squareloss,那就是最小二乘了;如果是HingeLoss,那就是著名的SVM了;如果是exp-Loss,那就是牛逼的Boosting了;如果是log-Loss,那就是LogisticRegres
cutie吖
·
2020-08-13 14:17
读书笔记
统计学习方法
李航
第一章习题
推荐一下个人博客1.1说明伯努利模型的极大似然估计以及贝叶斯估计中的统计学习方法三要素。伯努利模型是定义在取值为0和1的随机变量上的概率分布。假设观测到的伯努利模型n次独立数据生成结果,其中k次的结果为1,这时可以用极大似然估计或贝叶斯估计来估计结果为1的概率。用极大似然估计L(θ)=f(x_1,x_2,...x_n|θ)=Ck_nθ_k(1−θ)n−k直接求一阶导数另其等于零k⋅θk−1(1−θ
variations
·
2020-08-13 13:07
机器学习
感知机模型
最近在重新看
李航
的统计学习方法,总结下每章的内容,并使用python复现。
_木_易
·
2020-08-12 17:01
机器学习
机器学习
【学习笔记】【统计学习方法】第0章——引言
学习教材这里学习的教材采用《统计学习方法(第2版)》,作者为
李航
,出版社为清华大学出版社。
葑鈊丶
·
2020-08-12 12:43
#
统计学习方法
李航
博士:浅谈我对机器学习的理解
原文http://www.36dsj.com/archives/21024
李航
博士,华为技术有限公司诺亚方舟实验室首席科学家算算时间,从开始到现在,做机器学习算法也将近八个月了。
rokia_xmu
·
2020-08-11 23:16
机器学习
【机器学习】模型评估与选择
内容大多来自统计学习方法——
李航
机器学习——周志华1.统计学习三要素 统计学习方法都是有模型、策略和算法构成的,也就是统计学习方法由三要素构成,可以简单地表示为:方法=模型+策略+算法方法=模型+策略
S大幕
·
2020-08-11 22:30
机器学习
机器学习 — AdaBoost算法(手稿+代码)
见:《统计学习方法》
李航
大大1.3算法误差界的证明注释:误差的上界限由Zm约束
weixin_34308389
·
2020-08-11 20:15
一文囊括
李航
《统计学习方法》几乎所有的知识点!
如果大家对机器学习算法有所涉猎的话,想必你一定看过《统计学习方法》这本书,里面介绍了统计学中的一些基本算法和知识点,本文进行了详细的总结。如果大家对机器学习算法有所涉猎的话,想必你一定看过《统计学习方法》这本书,里面介绍了统计学中的一些基本算法和知识点,本文进行了详细的总结。转载来源公众号:机器学习算法与自然语言处理“阅读本文大概需要19分钟。”阅读目录:1.知识点2.感知机3.k近邻法4.朴素贝
VIP_CQCRE
·
2020-08-11 15:03
机器学习算法中关于朴素贝叶斯代码详细注释
K-近邻算法和决策树算法容易理解,但从朴素贝叶斯开始,机器学习书中关于算法来历及证明几乎没有,很多都涉及到统计概论的知识,推荐
李航
老师的《统计学习方法》,清华大学出版社,里面有关于机器学习的很多算法原理
IT奶牛
·
2020-08-11 13:06
机器学习实战-KNN 算法
最近开始看
李航
的《统计学习方法》,一段时间下来,虽然各种公式推导看起来吊的一B,但始终没有在头脑中形成一个画面。觉得还是边看边着手实现更好。选择了《机器学习实战》这本书配合来实现。
Fox1230
·
2020-08-11 10:27
机器学习
python
knn分类器
李航
老师《统计学习方法》的代码实现、课件、作业等相关资源的最全汇总
编辑|Will出品|字节AI
李航
:毕业于日本京都大学电气电子工程系,日本东京大学获得计算机科学博士学位。
风度78
·
2020-08-11 03:52
人工智能
机器学习
编程语言
数据挖掘
深度学习
逻辑斯蒂回归3 -- 最大熵模型之改进的迭代尺度法(IIS)
声明:1,本篇为个人对《2012.
李航
.统计学习方法.pdf》的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址)。
血影雪梦
·
2020-08-10 11:52
机器学习
序列标注:Bi-LSTM + CRF
CRF相关资料推荐关于crf,我看了很多资料,这里推荐几个-英文的crftutorial-
李航
的统计学习方法这两个讲的很细,公式很多,很多新入坑的小白看了肯定一头雾水,这里推荐一个知乎大神的回答,通俗易懂
taoqick
·
2020-08-10 01:12
算法
机器学习
隐马尔可夫模型hidden Markov model
本文是《统计学习方法》
李航
著学习笔记。为了叙述方便,将hiddenMarkovmodel简称HMM。
Young_win
·
2020-08-09 20:59
算法原理
经验条件熵公式的推导
李航
《统计学习方法》中,P62页公式5.8:计算特征A对数据集D的经验条件熵:此处,给出条件熵()的定义:X给定条件下Y的条件概率分布的熵对X的数学期望:在书中P61页下方给出了各类的定义:设训练数据集为
Yokate
·
2020-08-09 03:32
机器学习:sklearn数据集与机器学习组成
我们就可以将这样的表示和
李航
老师的说法对应起来。机器学习主要是由三部分组成,即:表示(模型)、评价(策略)和优化(算法)。表示(或者称为:模型):Representation表示主要做的就是建模,故可
幸福清风
·
2020-08-09 03:38
机器学习
机器学习入门
自己写一个最简单的bootloader_jz2440
此外目前我在gitHub上准备一些
李航
的《统计学习方法》的实现算法,目标将书内算法全部手打实现,欢迎参观并打星。
Dod_o_
·
2020-08-08 17:14
2440学习路
boot相关
CART后剪枝理解
转载https://blog.csdn.net/zhengzhenxian/article/details/79083643最近也是要找工作,在看
李航
的《统计学方法》在决策树部分基本都能明白(可能我明白的的是错的
小小小小裴
·
2020-08-07 20:33
机器学习
资料整理(备用)
个人网页文章目录前言Python《利用Python进行数据分析·第2版》《Python机器学习及实践从零开始通往Kaggle竞赛之路》机器学习/深度学习《机器学习》周志华《统计学习方法》
李航
《深度学习》
橘子2048
·
2020-08-07 18:18
资料
感知机原理剖析笔记(如何理解感知机)——《统计学习方法》
李航
文章目录感知机感知机模型感知机学习策略感知机学习算法原始形式对偶形式感知机感知机(perceptron)是二分类的线性分类模型,输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例分为正负两类的分离超平面。属于判别模型。感知机的学习训练过程旨在寻找一个超平面,能够将实例进行线性划分,为此,我们要导入误分类的损失函数,利用随机梯度下降法对损失函数进行最小
野犬1998
·
2020-08-07 17:47
机器学习之决策树原理及其python实现
机器学习之决策树原理及代码实现写在前面决策树1.决策树的定义2.决策树我的理解特征选择信息增益信息增益比算法实现ID3算法C4.5算法CART决策树三种算法的对比写在前面这是我开始入坑的第一篇博客,全部内容基于我的理解和参考博客,参考书籍为
李航
的
cug_humoumou
·
2020-08-07 13:25
机器学习
李航
:未来若干年,AI 技术发展可能会进入平缓期
先后在NEC公司中央研究所、微软亚洲研究院、华为诺亚方舟实验室从事和领导AI技术研发,现任字节跳动人工智能实验室总监的
李航
,就是一位AI技术的坚实研究者和实践者。
算法与数学之美
·
2020-08-07 11:20
机器学习之决策树(Decision Tree)①——基本概念及思想
李航
《统计学习方法》中的介绍如何创建一颗决策树?特征选择启发式学习启发式构建决策树过程贪心指标与建树方法信息增益与决策树算法启发式学习的两个问题决策树的剪枝决策树模型优缺点参考什么是决策树?
门前大橋下丶
·
2020-08-07 11:17
统计学习笔记
:感知机(perceptron)原理及C源码实现
相对来说感知机从原理或实现来说都较为简单,按照
李航
《统计学习方法》就可以实现,根据神经网络中的技巧,可对感知机进行优化,例如采用附加动量法进行权值、偏置的更新,防止训练陷入局部最小,关于这些我会在神经网络以及深度学习的内容中讲述
_Morris_
·
2020-08-06 10:45
[小木虫]推荐几个机器学习算法及应用领域相关的中国大牛
李航
:http://research.microsoft.com/en-us/people/hangli/,是MSRAWebSearchandMiningGroup高级研究员和主管,主要研究领域是信息检索
ML_NI_CSU
·
2020-08-05 13:52
#
Algorithm
logistic回归和最大熵
回顾发现,
李航
的《统计学习方法》有些章节还没看完,为了记录,特意再水一文。
仙守
·
2020-08-05 08:20
machine
learning
李航
《统计学习方法》EM算法导出,式9.13详细推导
感觉书中对式子9.13的推导不严谨,补充式子(9-13)完整推导:对于观测数据Y(不完全数据)关于参数θ的对数似然函数:L(θ)=logP(Y∣θ)=log∑ZP(Y,Z∣θ)=log(∑ZP(Y∣Z,θ)P(Z∣θ))\begin{aligned}L(\theta)&=\logP(Y|\theta)=\log\sum_{Z}P(Y,Z|\theta)\\&=\log\lef
莫叶何竹
·
2020-08-04 20:24
李航《统计学习方法》学习笔记
ML—拉格朗日对偶和KKT条件
zhengyizhangTianjinKeyLaboratoryofCognitiveComputingandApplicationTianjinUniversityOct23,2015本文基于斯坦福AndrewNG讲义和
李航
统计学习方法
掉下个小石头
·
2020-08-04 09:45
机器学习
李航
《统计学习方法》笔记
李航
《统计学习方法》读书笔记目录
李航
《统计学习方法》读书笔记一、知识点二、感知机三、k近邻法四、朴素贝叶斯五、决策树六、logistic回归和最大熵模型七、支持向量机八、提升方法九、EM算法EM算法是一种迭代算法
yz1780041410
·
2020-08-04 09:00
机器学习算法
《统计学习方法(
李航
)》讲义 第07章 支持向量机
支持向量机(supportvectormachines,SVM)是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量机还包括核技巧,这使它成为实质上的非线性分类器.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convexquadratic也等价于正则化的合页损失函数的最小化问题.支持向programming)的问题,量机
Just do it
·
2020-08-04 04:44
矩阵的奇异值分解(SVD)及PCA应用
本篇文章参考了
李航
老师的《统计学习方法》第二版。
song430
·
2020-08-04 01:45
机器学习算法
支持向量机
支持向量机@(2016/08/02)阅读笔记——周志华《机器学习》和
李航
《统计学习方法》支持向量机(supportvectormachine)是一种二类分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器
MeJnCode
·
2020-08-04 00:33
MachineLearning
李航
《统计学习方法》学习笔记
文章目录统计学习方法概论监督学习知识点感知机k近邻法kd树:朴素贝叶斯决策树决策树的生成:决策树的剪枝:logistic回归和最大熵模型支持向量机线性可分支持向量机:非线性支持向量机:提升方法AdaBoost:EM算法隐马尔可夫模型(HMM)统计学习方法总结神经网络反向传播(BP)算法:K-Means传统算法:K-Means++ElkanK-MeansMiniBatchK-MeansBagging
Code进阶狼人
·
2020-08-03 19:00
Python机器学习与深度学习
Python学习笔记
机器学习
统计学习方法
深度学习
机器学习:朴素贝叶斯代码实现(不调库,基于《统计学习方法》中的简单数据)
什么是朴素贝叶斯:《统计学习方法》中,
李航
老师简洁地介绍了朴素贝叶斯基础的原理和算法虽然通篇下来也是满满的公式,但基本都是上层的公式,省略了许多底层的推导例如:极大似然估计法推出朴素贝叶斯法中的先验概率估计公式
CxsGhost
·
2020-08-03 12:02
机器学习
【统计学习方法-
李航
-笔记总结】二、感知机(感知机的原始形式与对偶形式)
本文是
李航
老师《统计学习方法》第二章的笔记,欢迎大佬巨佬们交流。
zl3090
·
2020-08-03 09:44
机器学习
概率论与数理
统计学习笔记
五:假设检验(未完待续)
1.问题提法和基本概念1)例子与问题提法a)假设:一个其正确与否有待通过样本区判断的陈述b)检验:动词指判断全过程的操作;名词指判断准则c)接受该假设:“认为假设正确”在统计学上称为接受该假设d)否定或拒绝该假设:“认为假设不正确”e)原假设和对立假设原假设(零假设、解消假设):在假设检验中,常把一个被检验的假设叫做原假设对立假设(备择假设):原假设的对立面就叫做对立假设(既可以指全体,也可以指一
坚持就是胜利z
·
2020-08-03 09:43
数学基础理论
1.3万字的支持向量机-含详尽的数学推导和细致全面的逻辑解释-第一部分
一、前言(1)现有SVM相关材料的贡献与不足周志华《机器学习》
李航
《统计学习方法》支持向量机通俗导论(理解SVM的三层境界)从零推导支持向量机(2)本文的贡献和不足本文的贡献本文的不足(3)阅读本文所需的数学知识
大奸猫
·
2020-08-03 09:55
机器学习
SVM中的训练算法:序列最小最优化算法SMO的读书笔记
最近重看
李航
的统计学习方法,看SVM这章,细细的对了一下其中将SMO的这一张,记得去年这会儿看这本书的SMO这章还有点懵懵懂懂,并在书上写了自己一些疑问的笔记,今年重新看发现之前的疑问不再是疑问了,于是做个笔记总结一下
薛定谔的熊
·
2020-08-03 08:06
关于SVM中SMO算法第一个向量选择的问题
在看
李航
编写的《统计学习方法》一书中第128页时,涉及到SMO算法中第一个变量的选择,然后作者指出选择不满足KKT条件的变量作为第一个变量,然后突然给出了如下三个KKT条件:αi=0⇔yig(xi)≥1
重生之年
·
2020-08-03 08:20
机器学习
上一页
11
12
13
14
15
16
17
18
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他